
CLUSTER-LENSING: A PYTHON PACKAGE FOR GALAXY
CLUSTERS AND MISCENTERING

Jes Ford and Jake VanderPlas
eScience Institute, University of Washington, 3910 15th Ave. NE, WRF Data Science Studio, Seattle,

WA 98195-1570, USA; jesford@uw.edu, jakevdp@uw.edu
Received 2016 May 17; revised 2016 August 4; accepted 2016 August 30; published 2016 December 7

ABSTRACT

We describe a new open source package for calculating properties of galaxy clusters, including Navarro, Frenk,
and White halo profiles with and without the effects of cluster miscentering. This pure-Python package,
cluster-lensing, provides well-documented and easy-to-use classes and functions for calculating cluster
scaling relations, including mass-richness and mass-concentration relations from the literature, as well as the
surface mass density ()S R and differential surface mass density ()DS R profiles, probed by weak lensing
magnification and shear. Galaxy cluster miscentering is especially a concern for stacked weak lensing shear studies
of galaxy clusters, where offsets between the assumed and the true underlying matter distribution can lead to a
significant bias in the mass estimates if not accounted for. This software has been developed and released in a
public GitHub repository, and is licensed under the permissive MIT license. The cluster-lensing package is
archived on Zenodo. Full documentation, source code, and installation instructions are available at http://jesford.
github.io/cluster-lensing/.

Key words: dark matter – galaxies: clusters: general – gravitational lensing: weak – methods: data analysis –
methods: numerical

1. INTRODUCTION

Clusters of galaxies are the largest gravitationally collapsed
structures to have formed in the history of the universe. As
such, they are interesting both from a cosmological as well as
an astrophysicalperspective. In the former case, the galaxy
cluster number density as a function of mass (the cluster mass
function) is a probe of cosmological parameters including the
fractional matter density Wm and the normalization of the
matter power spectrum s8. Astrophysically, the deep potential
wells of galaxy clusters are environments useful for testing
theories of general relativity, galaxy evolution, and gas and
plasma physics, among other things (Voit 2005).

The common thread among these diverse investigations is
the requisite knowledge of the mass of the galaxy cluster,
which is largely composed of its invisibledark-matter halo.
Although many techniques exist for estimating the total mass of
these systems, weak lensing has emerged as somewhat of a
gold standard, since it is sensitive to the mass itself, and not to
the dynamical state or other biased tracers of the underlying
mass. Scaling relations between weak lensing derived masses,
and other observables, including richness, X-ray luminosity
and temperature, for examples, are typically calibrated from
large surveys and extrapolated to clusters for which gravita-
tional lensing measurements are impossible or unreliable. Since
weak lensing masses are often considered the “true” masses,
against which other estimates are compared (e.g., Leauthaud
et al. 2010; von der Linden et al. 2014; Hoekstra et al. 2015), it
is paramount that cluster masses from weak lensing modeling
are as unbiased as possible.

For stacked weak lensing measurements of galaxy clusters,
an important source of bias in fitting a mass model is the
inclusion of the effect of miscentering offsets. Miscentering
occurs when the center of the mass distribution—the dark-
matter halo—does not perfectly coincide with the assumed
center around which tangential shear (or magnification) profiles
are being measured. Candidate centers for galaxy clusters are

necessarily chosen from observational proxies, and often
include a single galaxy, such as the brightest or most massive
member, or the centroid of some extended quantity like the
peak of X-ray emission or average of galaxy positions (George
et al. 2012). The particular choice of center may be offset from
the true center due to interesting physical processes such as
recent mergers and cluster evolution, or simply due to
misidentification of the proxy of interest (Johnston et al. 2007).
The miscentering effect on the stacked weak lensing profile

can be included in a proper modeling of the measurement, as
done in Johnston et al. (2007), Mandelbaum et al. (2010),
Oguri & Takada (2011), George et al. (2012), Sehgal et al.
(2013), Oguri (2014), Ford et al. (2014, 2015), andSimet et al.
(2016). The inclusion of this effect commonly assumes a form
for the distribution of offsets, such as a Rayleigh distribution in
radius (which represents a 2D Gaussian in the plane of the sky).
This distribution is convolved with the standard (centered) halo
profile to obtain the miscentered version. Software for
calculating these miscentered weak lensing profiles was
developed in order to produce results in Ford et al.
(2014, 2015), and has recently been publicly released to the
astronomical community (Ford 2016).1

When many different gravitational lenses are stacked, as is
often necessary to increase signal-to-noise for weak lensing
measurements, care must be taken in the interpretation of the
average signal. The issue here is that the (differential) surface
mass density is not a linear function of the mass, so the average
of many stacked profiles does not directly yield the average
mass of the lens sample. Care must be taken to consider the
underlying distribution of cluster masses as well as the redshifts
of lenses and sources, all of which affect the amplitude of the
measured lensing profile. One approach to this is to use a so-
called composite-halo approach (e.g., Hildebrandt et al. 2011;
Ford et al. 2012, 2014, 2015; Simet et al. 2016), where profiles

The Astronomical Journal, 152:228 (12pp), 2016 December doi:10.3847/1538-3881/152/6/228
© 2016. The American Astronomical Society. All rights reserved.

1 https://github.com/jesford/cluster-lensing

1

mailto:jesford@uw.edu
mailto:jakevdp@uw.edu
http://jesford.github.io/cluster-lensing/
http://jesford.github.io/cluster-lensing/
http://dx.doi.org/10.3847/1538-3881/152/6/228
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/152/6/228&domain=pdf&date_stamp=2016-12-07
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/152/6/228&domain=pdf&date_stamp=2016-12-07
https://github.com/jesford/cluster-lensing

are calculated for all individual lens objects and then averaged
together to create a model that can be fit to the measurement.
The ClusterEnsemble()class discussed in Section 2.3 is
designed with this approach in mind.

A popular model for the dark-matter distribution in a
gravitationally collapsed halo, such as a galaxy cluster, is the
Navarro, Frenk, and White (NFW) model. This density profile
(given in Equation (1) below) was determined from numerical
simulations that included the dissipationless collapse of density
fluctuations under gravity (Navarro et al. 1997). The simpler
Singular Isothermal Sphere density model, which only has one
free parameter in contrast to the two for NFW, does not tend to
fit the inner profiles of halos well and is also unphysical in that
the total mass diverges (Schneider 2006). Other models such as
the generalized-NFW and the Einasto profile tend to better
describe the full radial distribution of darkmatter in halos, at
the expense of adding a third parameter to characterize the
inner slope of the density profiles (see, e.g., discussion in
Dutton & Macciò 2014). In the software package presented in
this work, we only include the standard two-parameter NFW
model, but future work should make alternative models
available as well.

2. DESCRIPTION OF THE CODE

In this section, we demonstrate each of the individual
modules available in the cluster-lensing package. In
Section 2.1, we describe a class for calculating surface mass
density profiles directly from NFW and cosmological para-
meters. Next, we outline the functions available for mass-
concentration relations in Section 2.2. Then, in Section 2.3,we
present the class ClusterEnsemble(), and its related
functions, which tie together the previously discussed function-
ality into a framework for easily manipulating and producing
profiles for multiple galaxy clusters at once, from common
observational quantities. Much of the content of this section
comes directly from the online documentation.2 Throughout
the modules, dimensionful quantities are labelled as such by
means of the astropy.units package.

2.1. nfw

The nfw module contains a single class called Surface-
MassDensity(), which computes the surface mass density

()S R and the differential surface mass density ()DS R using the
class methods sigma_nfw() and deltasigma_nfw(),
respectively. These profiles are calculated according to the
analytical formulas first derived by Wright & Brainerd (2000),
assuming the spherical NFW model, and can be applied to any
dark-matter halo: this module is not specific to galaxy clusters.

The three-dimensional density profile of an NFW halo is
given by

()
()()

()r
d r

=
+

r
r r r r1

, 1c crit

s s
2

where rs is the cluster scale radius, dc is the characteristic halo
overdensity, and ()r r= zcrit crit is the critical energy density of
the universe at the lens redshift. These three parameters3 must
be specified when instantiating the class

SurfaceMassDensity(), via the arguments rs, del-
ta_c, and rho_crit, respectively. The units on rs are
assumed to be megaparsecs, delta_c is dimensionless, and
rho_crit is in - -

M Mpc pc1 2;though, the actual inclusion
of the astropy.units on these variables is optional. The
user will probably also want to choose the radial bins for the
calculation thatare specified via the keyword argument
rbins, in megaparsecs. The surface mass density is the
integral along the line of sight of the three-dimensional
density:

() () ()ò rS =
¥

R R y dy2 , . 2
0

Here R is the projected radial distance (in the plane of the sky).
We can adopt the dimensionless radius ºx R rs and,

following from Wright & Brainerd (2000), show that

() () ()d rS =x r f x2 , 3s c crit

where () =f x

(())

()

- + - <

=

-
- - >

- -
⎜ ⎟

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠x

x x

x

x
x x x

1
1 ln 1 , for 1;

1 3, for 1;
1

1
1 arccos 1 1 , for 1.

4

x x2 1
1 1

1
2

2
2

2

The differential surface mass density is calculated from the
definition

() () () ()DS º S < - Sx x x , 5

where

() () ()òS < = S ¢ ¢ ¢x
x

x x dx
2

6
x

2 0

is the average surface mass density interior to the dimension-
less radius x. The quantity DS is what is actually probed by a
weak lensing shear measurement (in contrast to magnification,
which probes the surface mass density Σ directly). It is related
to the average tangential shear around a lens by

() () ()gDS = á ñSx x , 7t crit

where the critical surface mass density is

()
p

S =
c

G

D

D D4
. 8crit

2
s

l ls

Here c is the speed of light, G is the gravitational constant, and
Ds, Dl, and Dls are the angular diameter distances between the
observer and source, the observer and lens, and the lens and
source, respectively.
We can rewrite the differential surface mass density in the

form in which it is computed in the nfw module:

() () ()d rDS =x r g x , 9s c crit

2 http://jesford.github.io/cluster-lensing/
3 Or, in the case of calculating multiple NFW halos at once, three array-like
objects representing each of these parameters.

2

The Astronomical Journal, 152:228 (12pp), 2016 December Ford & VanderPlas

http://jesford.github.io/cluster-lensing/

where () =g x

() () ()
() ()

()
() ()

()

()

()

+ -

-

+ - +

- - +

+ -
-

<

+ =

-
+

-
-
+

+ -
-

>

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡
⎣⎢

⎤
⎦⎥

x x

x

x x

x x

x

x

x
x

x

x x x

x

x

x

x

x
x

4 2 1

1
ln

1 1 1

1 1 1

4
ln

2

2

1
, for 1;

10 3 4 ln 1 2 , for 1;

8

1

4

1
arctan

1

1

4
ln

2

2

1
, for 1.

10

2 2

2

2 2

2 2 2 3 2

2 2

Running sigma_nfw() or deltasigma_nfw(), with
only a specification of halo properties rs, delta_c,
rho_crit, and radial bins rbins, will lead to the calculation
of halo profiles according to Equations (3) and (5) outlined
above.

>>> from clusterlensing import SurfaceMassDensity
>>> rbins=[0.1, 0.5, 1.0, 2.0, 4.0] # Mpc
>>> smd=SurfaceMassDensity(rs = [0.1],
... rho_crit = [0.2],
... delta_c = [9700.],
... rbins = rbins)
>>> sigma=smd.sigma_nfw()
>>> # surface mass density with default units
>>> sigma[0]
< Quantity [129.33333333, 11.64751032, 3.33992059,
0.89839601, 0.23327149] solMass / pc2>
>>>
>>> # surface mass density with no units
>>> sigma[0].value
array([129.33333333, 11.64751032, 3.33992059,
0.89839601, 0.23327149])

These are the standard centered NFW profiles, under the
assumption that the peak of the halo density distribution
perfectly coincides with the identified halo center. This may not
be a good assumption, however, and the user can instead run
these calculations for miscentered halos by specifying the
optional input parameter offsets. This parameter sets the
width of a distribution of centroid offsets, assuming a two-
dimensional Gaussian distribution on the sky. This offset
distribution is equivalent to, and implemented in thecode, asa
uniform distribution in angle and a Rayleigh probability
distribution in radius

() ()
s s

= -
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥P R

R R
exp

1

2
. 11off

off

off
2

off

off

2

The parameter offsetsareequivalent to soff in this equation.

>>> from clusterlensing import SurfaceMassDensity
>>> rbins=[0.1, 0.5, 1.0, 2.0, 4.0]
>>> # single miscentered halo profile
>>>smd=SurfaceMassDensity(rs = [0.1],
... rho_crit = [0.2],
... delta_c = [9700.],
... rbins = rbins,
... offsets = [0.3])
>>> sigma=smd.sigma_nfw()
>>> sigma[0]
<Quantity [38.60655298, 17.57285034, 4.11253461,

(Continued)

0.93809627, 0.23574031] solMass / pc2>
>>>
>>> # example calculating multiple profiles
>>> smd=SurfaceMassDensity(rs = [0.1,0.2,0.2],
... rho_crit = [0.2,0.2,0.2],
... delta_c = [9700,9700,9000],
... rbins = rbins,
... offsets = [0.3,0.3,0.3])
>>> sigma=smd.sigma_nfw()
>>> sigma <Quantity [[38.60655298, 17.57285034,
4.11253461,

0.93809627, 0.23574031], [181.91820855, 92.86651598,
27.34020647, 6.94677803, 1.81488253], [168.79009041,
86.16480864, 25.36720188, 6.44546415, 1.68391163]
] solMass / pc2>

The miscentered surface mass density profiles are given by
the centered profiles (Equations (3) and (5)), convolved with
the offset distribution (Equation (11)). We follow the offset
halo formalism first written down by Yang et al. (2006), and
applied to cluster miscentering by, e.g., Johnston et al. (2007),
George et al. (2012), Ford et al. (2014, 2015), and Simet et al.
(2016). Specifically, we calculate the offset surface mass
density Soff as follows.

() (∣) () ()òS = S
¥

R R R P R dR , 12off

0
off off off

(∣) () ()òp
qS = S

p
R R r d

1

2
. 13off

0

2

Here ()q= + -r R R RR2 cos2
off
2

off and θ is the azimuthal
angle (Yang et al. 2006). Equation (12) describes the average
stacked profile of many different galaxy clusters, where each
individual cluster is assumed to have an individual centroid
offset, which is drawn from the radial distribution ()P Roff , and
from a uniform distribution in angle. The DSoff profile is
calculated from Soff , in analogy with Equations (5) and (6).

>>> from clusterlensing import SurfaceMassDensity
>>> rbins=[0.1, 0.5, 1.0, 2.0, 4.0]
>>> # perfectly centered DeltaSigma profile
>>> smd=SurfaceMassDensity(rs=[0.1],
... rho_crit=[0.2],
... delta_c=[9700.],
... rbins=rbins)
>>> deltasigma=smd.deltasigma_nfw()
>>> deltasigma[0]
<Quantity [108.78445455, 25.47093418, 10.29627483,
3.71631903, 1.23840727] solMass / pc2>
>>>
>>> # miscentered DeltaSigma profile
>>> smd=SurfaceMassDensity(rs=[0.1],
... rho_crit=[0.2],
... delta_c=[9700.],
... rbins=rbins,
... offsets=[0.3])
>>> deltasigma=smd.deltasigma_nfw()
>>> deltasigma[0]
<Quantity [0.71370144, 9.35821817, 8.90118561,
3.6475417, 1.23610325] solMass / pc2>

In the case of perfectly centered clusters, both quantities Σ
and DS are calculated independently from straightforward

3

The Astronomical Journal, 152:228 (12pp), 2016 December Ford & VanderPlas

formula (Wright & Brainerd 2000). In the miscentered case,
however, thecalculation of DSoff is more complicated and
relies on the quantitySoff directly. If the current instantiation of
SurfaceMassDensity() has already done the Soff calc-
ulation, then its result will be employed in calculatingDS ;off if
not, it will be calculated for the first time. It is because of the
interdependence of these two calculations that the decision was
made to have the radial binparameter rbins be passed into
the SurfaceMassDensity() object itself, instead of being
specified when a particular profile is to be calculated. This
choice ensures that the same radial bins will be used for every
type of profile (so that Soff and DSoff correspond to the same
radii), but also requires the user to instantiate a new
SurfaceMassDensity() object if they want to use
different radial bins.

2.2. cofm

The cofm module currently contains three functions, each of
which calculates halo concentration from mass, redshift, and
cosmology, according to a prescription given in the literature.
These functions are c_DuttonMaccio() (for calculations
following Dutton & Macciò 2014), c_Duffy() (following
Duffy et al. 2008), and c_Prada() (for Prada et al. 2012).
Halo mass-concentration relations are an area of active
research, and there have been discrepancies between results
from different observations and simulations, and disagreement
surrounding the best choice of model (see, e.g., Dutton &
Macciò 2014; Klypin et al. 2016). We do not aim to join this
discussion here, but focus on outlining the functionality
provided by the cluster-lensing package, for calculating
these different concentration values.

All three functions require two input parameters (scalars or
array-like inputs), which are the halo redshift(s) z and the halo
mass(es) m. Specifically, the latter is assumed to correspond to
the M200 mass definition, in units of solar masses. M200 is the
mass interior to a sphere of radius r200, within which the
average density is ()r z200 crit .

The default cosmology used is from the measurements by
the Planck Collaboration et al. (2014), which is imported from
the module astropy.cosmology.Planck13. However,
the user can specify alternative cosmological parameters. For
calculating concentration according to either the Duffy et al.
(2008) or the Dutton & Macciò (2014) prescription, the only
cosmological parameter required is the Hubble parameter,
which can be passed into c_Duffy() or c_DuttonMaccio
() as the keyword argument h. For the Prada et al. (2012)
concentration, the user would want to specify Om_M and Om_L
(the fractional energy densities of matter and the cosmological
constant) in addition to h, in the call to c_Prada().

The c_DuttonMaccio() calculation of concentration is
done according to the powerlaw

([]) ()= + -
c a b M h Mlog log 10 , 1410 200 10 200

12 1

where

[] ()= + -a z0.52 0.385 exp 0.617 , 151.21

()= - +b z0.101 0.206 . 16

The above three equations map to Equations (7), (11), and (10),
respectively,in Dutton & Macciò (2014). The values in these
expressions were determined from simulations of halos

between < <z0 5, spanning over fiveorders of magnitude
in mass, and were shown to match observational measurements
of low-redshift galaxies and clusters (Dutton & Macciò 2014).
This concentration-mass relation is the default one used by the
clusters module, discussed in Section 2.3.

>>> from clusterlensing import cofm
>>> # single 10∗∗14 Msun halo at z=1
>>> cofm.c_DuttonMaccio(0.1, 1e14)
array([5.13397936])
>>> # example with multiple halos
>>> cofm.c_DuttonMaccio([0.1, 0.5], [1e14, 1e15])
array([5.13397936, 3.67907305])

The concentration calculation in c_Duffy() is

() () ()= +c A M M z1 , 17B C
200 200 pivot

where

{ } { } ()= - -A B C, , 5.71, 0.084, 0.47 , 18

()= ´ -
M h M2 10 . 19pivot

12 1

Equation (17) above corresponds to Equation (4) in Duffy et al.
(2008). The values for A, B, and C can be found in Table 1 of
that work, where they are specific to the “full” (relaxed and
unrelaxed) sample of simulated NFW halos, spanning the
redshift range of < <z0 2. Mpivot can be found in the caption
of their Table 1 as well. One caveat with this relation is that the
cosmology used in creating the Duffy et al. (2008) simulations
was that of the now outdated WMAP5 experiment (Komatsu
et al. 2009).

>>> from clusterlensing import cofm
>>> # default cosmology (h=0.6777)
>>> cofm.c_Duffy([0.1, 0.5], [1e14, 1e15])
array([4.06126115, 2.89302767])
>>> # with h=1
>>> cofm.c_Duffy([0.1, 0.5], [1e14, 1e15], h=1)
array([3.93068341, 2.80001099])

The c_Prada() concentration calculation is much more
complex, and written in terms of ()s M x,200 p , the rms
fluctuation of the density field. The Prada et al. (2012) halo

Table 1
Total Runtime for Calculating both the ()S R and ()DS R NFW Profiles for

Different Numbers of Clusters

Nclusters Centered? Time (s)

10 yes 1.26×10−3

10 no 5.6
50 yes 1.30×10−3

50 no 27.6
100 yes 1.42×10−3

100 no 75.0

Note.The calculation time is close to constant for centered calculations. For
miscentered calculations, the runtime scales linearly with the number of
clusters and with the number of radial bins (these examples all assume 10 bins).
These calculations were run on a 2015 MacBook Pro.

4

The Astronomical Journal, 152:228 (12pp), 2016 December Ford & VanderPlas

concentration is given by4

()
() ()

[() ()]
()

s

s

= +

´

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

c B x
B x M x

B x M x

2.881
,

1.257
1

exp
0.06

,
. 20

200 0 p
1 p 200 p

1.022

1 p 200 p
2

The cosmology and redshift dependence is encoded by the
variable xp, which is

() ()=
W
W

+L -
⎛
⎝⎜

⎞
⎠⎟x z

, 0
1 . 21p

,0

m

1 3
1

The functions within Equation (20) are as follows.

() () ()s =
+ +

M x D x
y

y y
,

16.9

1 1.102 6.22
22200 p p

p
0.41

p
0.2

p
0.333

()º
-

y
h M

M

10
23p

12 1

200

()
()

()ò=
W
W

+

+L

⎛
⎝⎜

⎞
⎠⎟D x

x

x

x dx

x

5

2

1

1
24m

x

p
,0

,0

1 3
p
3

p
3 2 0

3 2

3 3 2

p

()
()

()
()=B x

c x

c 1.393
250 p

min p

min

()
()

()
()

s

s
=

-

-B x
x

1.393
261 p

min
1

p

min
1

() [()]

()

p
= + -

+

⎡
⎣⎢

⎤
⎦⎥

c x x3.681 1.352
1

arctan 6.948 0.424

1

2
27

min p p

() [()]

()

s
p

= + -

+

- ⎡
⎣⎢

⎤
⎦⎥

x x1.047 0.599
1

arctan 7.386 0.526

1

2
.

28

min
1

p p

In order of appearance above, beginning with our
Equation (20), these equations correspond to Equations (14)–
(17), (13), (23a), (23b), (12), (18a), (18b), (19), (20) in Prada
et al. (2012). The numerical values in these equations were
obtained empirically from the simulations described in
that work.

>>> from clusterlensing import cofm
>>> cofm.c_Prada([0.1, 0.5], [1e14, 1e15])
array([5.06733941, 5.99897362])
>>> cofm.c_Prada([0.1, 0.1, 0.1], [1e13, 1e14, 1e15])
array([5.71130928, 5.06733941, 5.30163572])

The last code example demonstrates the controversial feature of
the Prada et al. (2012) mass-concentration relation—an upturn
in concentration values for the highest mass halos. This is in
opposition to the canonical view that higher mass halos have

lower concentrations (Navarro et al. 1996, 1997; Jing 2000;
Bullock et al. 2001).

2.3. Clusters

The clusters module is designed to provide a catalog-
level tool for calculating, tracking, and updating galaxy cluster
properties and profiles, through structuring data from multiple
clusters as an updatable Pandas Dataframe, and providing an
intelligent interface to the other modules discussed in
Sections 2.1 and 2.2. This module contains a single class
ClusterEnsemble(), as well as three functions:mas-
s_to_richness(), richness_to_mass(), and calc_-
delta_c().
The function calc_delta_c() takes a single input

parameter, the cluster concentration c200 (e.g., as calculated
by one of the functions in the cofm module), and returns the
characteristic halo overdensity

() ()
()d =

+ - +
⎜ ⎟⎛
⎝

⎞
⎠

c

c c c

200

3 ln 1 1
. 29c

200
3

200 200 200

Both input and output are dimensionless here. For example, to
convert a concentration value of =c 5200 to dc, you could do

>>> from clusterlensing.clusters import calc_delta_c
>>> calc_delta_c(5)
8694.8101906193315

The pair of functions mass_to_richness() and rich-
ness_to_mass(), as their names imply, perform conver-
sions between cluster mass and richness. The only required
input parameter to mass_to_richness() is the mass, and
likewise the only required input to richness_to_mass() is
richness. The calculations assume a power-law form for the
relationship between these variables, which is a common
simple choice for this scaling relation (e.g., Johnston
et al. 2007; Mandelbaum et al. 2008; Andreon & Hurn 2010):5

()=
b

⎜ ⎟⎛
⎝

⎞
⎠M M

N

20
. 30200 0

200

Here M0 is the normalization, which defaults to ´2.7 1013, but
can be changed in the call to either function by setting the
norm keyword argument. The power-law slope b = 1.4 by
default, but can be set by specifying the optional slope input
parameter. When these functions are invoked by the Clus-
terEnsemble() class, they are applied to the particular
mass definition M200, and assume units of Me. However, the
functions themselves do not assume a mass definition or unit,
and can be generalized to any parameter (or type of richness)
that has a power-law relationship with mass.

>>> from clusterlensing.clusters import ⧹
... mass_to_richness, richness_to_mass
>>> richness_to_mass(50)
97382243648736.9
>>> mass_to_richness(97382243648736.9)
50.0
>>> # specify other power-law parameters
>>> richness_to_mass(20, slope=1.5, norm=1e14)
100000000000000.0

4 We use the subscript “p” to distinguish some variables in the equations from
Prada et al. (2012) from those in the current work.

5 Note that the pivot point of 20 is arbitrary, but allows for a straightforward
interpretation of M0 as the mass of cluster with richness 20.

5

The Astronomical Journal, 152:228 (12pp), 2016 December Ford & VanderPlas

The ClusterEnsemble() class creates, modifies, and
tracks a Pandas DataFrame,containing the properties and
attributes of many galaxy clusters at once. When given a new
or updated cluster property, it calculates and updates all
dependent cluster properties, treating each cluster (row) in the
DataFrame as an individual object. This makes it easy to
calculate the ()S R and ()DS R weak lensing profiles for many
different mass clusters at different redshifts, with a single
command. In contrast to using the SurfaceMassDensity
() class discussed in Section 2.1, the user only needs to
specify the cluster redshifts and eitherthe mass or richness. If
richness is supplied, then mass is calculated from it, assuming
the form of Equation (30) (which is customizable); if mass is
specified instead, then the inverse relation is used to calculate
richness. In either case,the changes are propagated to any
dependent variables.

>>> from clusterlensing import ClusterEnsemble
>>> z=[0.1,0.2,0.3]
>>> c=ClusterEnsemble(z)
>>> n200=[20, 20, 20]
>>> c.n200=n200
>>>
>>> # display cluster dataframe
>>> c.dataframe
z n200 m200 r200 c200
delta_c rs

0 0.1 20 2.700000e+13 0.612222 5.839934
12421.201995 0.104834
1 0.2 20 2.700000e+13 0.591082 5.644512
11480.644557 0.104718
2 0.3 20 2.700000e+13 0.569474 5.442457
10555.781440 0.104636

>>>
>>> # specify mass directly
>>> c.m200=[1e13, 1e14, 1e15]
>>> c.dataframe
z n200 m200 r200 c200
delta_c rs

0 0.1 9.838141 1.000000e+13 0.439664 6.439529
15599.114356 0.068276
1 0.2 50.956400 1.000000e+14 0.914520 4.979102
8612.362538 0.183672

2 0.3 263.927382 1.000000e+15 1.898248 3.886853
4947.982895 0.488377

The above examples also demonstrate that cluster masses are
converted to concentrations and to characteristic halo over-
densities. This assumes the default mass-concentration relation
of the c_DuttonMaccio() form, or the user can instead
specify another of the relations by setting the keyword
cm=“Prada” or cm=“Duffy”, when the ClusterEnsem-
ble() object is instantiated. Cosmology can also be specified
upon instantiation, by setting the cosmology keyword to be
any astropy.cosmology object that has an h and a Om0
attribute. If not specified explicitly, the default cosmological
model used is astropy.cosmology.Planck13. Here is
an example of creating a ClusterEnsemble() object that
uses the WMAP5 cosmology (Komatsu et al. 2009) and the
Duffy et al. (2008) concentration:

>>> from astropy.cosmology import WMAP5 as cosmo
>>> c=ClusterEnsemble(z, cm=“Duffy”,
... cosmology=cosmo)
>>> c.n200=[20, 30, 40]
>>> c.dataframe

(Continued)

z n200 m200 r200 c200
delta_c rs
0 0.1 20 2.700000e+13 0.599910 4.520029
6920.955951 0.132723
1 0.2 30 4.763120e+13 0.702040 4.136873
5678.897592 0.169703
2 0.3 40 7.125343e+13 0.775889 3.851601
4849.836498 0.201446

Instead of using the dataframe attribute, which retrieves the
Pandas DataFrame object itself, it might be useful to use the
show()method, which prints additional information to the
screen, including assumptions of the mass-richness relation:

>>> c.show()

Cluster Ensemble:

z n200 m200 r200 c200
delta_c rs

0 0.1 20 2.700000e+13 0.599910 4.520029
6920.955951 0.132723
1 0.2 30 4.763120e+13 0.702040 4.136873
5678.897592 0.169703

2 0.3 40 7.125343e+13 0.775889 3.851601
4849.836498 0.201446

Mass-Richness Power Law:
M200=norm ∗(N200 / 20) ∧ slope
norm: 2.7e+13 solMass
slope: 1.4

>>> # update the mass-richness parameters
>>> # and show the resulting table
>>> c.massrich_norm=3e13
>>> c.massrich_slope=1.5
>>> c.show()

Cluster Ensemble:
z n200 m200 r200 c200
delta_c rs

0 0.1 20 3.000000e+13 0.621353 4.480202
6784.805438 0.138689
1 0.2 30 5.511352e+13 0.737028 4.086481
5526.615129 0.180358
2 0.3 40 8.485281e+13 0.822406 3.795500
4696.109606 0.216679

Mass-Richness Power Law:
M200=norm ∗(N200 / 20) ∧slope
norm: 3e+13 solMass
slope: 1.5

The last example also demonstrates how the slope or normal-
ization of the mass-richness relation can be altered, and the
changes propagate from richness through to mass and other
variables.
Then all the ingredients are in place to calculate halo profiles

by invoking the calc_nfw() method, which interfaces to the
sigma_nfw() and deltasigma_nfw() methods of the
SurfaceMassDensity() class, and passes it the required
inputs { }r dr , ,s crit c for all the clusters behind the scenes. The
value of rcrit is calculated at every cluster redshift using the
(default astropy.cosmology.Planck13 or user-

6

The Astronomical Journal, 152:228 (12pp), 2016 December Ford & VanderPlas

specified) cosmological model. The user must specify the
desired radial bins rbins in megaparsecs.

>>> import numpy as np
>>> # create some logarithmic bins:
>>> rmin, rmax=0.1, 5. # Mpc
>>> rbins=np.logspace(np.log10(rmin),
... np.log10(rmax),
... num=8)
>>> # calculate the profiles:
>>> c.calc_nfw(rbins=rbins)
>>> # profiles now exist as attributes:
>>> c.sigma_nfw
<Quantity [[128.97156123, 62.58323349, 27.01073105,
10.60607722, 3.88999449, 1.36360964, 0.46464366,
0.15563814], [132.13989867, 64.10484454, 27.66159293,
10.85990257, 3.98265113, 1.39599118, 0.47565695,
0.15932308], [135.62272115, 65.782882, 28.38138702,
11.14121765, 4.08549675, 1.43196834, 0.48790043,
0.16342108]] solMass / pc2>
>>> c.deltasigma_nfw
<Quantity [[105.3190568 , 72.43842908, 43.74538085,
23.44005481, 11.37085955, 5.10385452, 2.16011364,
0.87479771], [107.98098357, 74.25022426, 44.82825347,
24.01505305, 11.64776118, 5.22744541, 2.21219956,
0.89582394], [110.88173507, 76.23087398, 46.01581348,
24.64741078, 11.95297965, 5.36391529, 2.26978998,
0.91909571]] solMass / pc2>

Similar to the direct use of SurfaceMassDensity(),
discussed in Section 2.1, the miscentered profiles can be
calculated from the calc_nfw() method, by supplying the
optional offsets keyword with an array-like object of length
equal to the number of clusters, where each element is the
width of the offset distribution in megaparsecs(soff in
Equation (11)).

>>> c.calc_nfw(rbins=rbins, offsets=[0.3,0.3,0.3])
>>> # the offset sigma profile is now:
>>> c.sigma_nfw
<Quantity [[42.50844685, 39.74291121, 32.29894213,
18.50988719, 6.16284894, 1.89335218, 0.62609991,
0.20840423], [68.10228964, 63.87901872, 52.56539317,
31.20890672, 11.17821854, 3.5884285, 1.20745376,
0.40574057], [95.16077234, 89.48298631, 74.29328561,
45.24074628, 17.06333763, 5.66481165, 1.93408383,
0.65518747]] solMass / pc2>

Although SurfaceMassDensity() from the nfw
module, and ClusterEnsemble().calc_nfw() from
the clusters module, are both capable of computing the
same ()S R and ()DS R profiles, each require different forms of
input, which would make sense for different use cases. For the
studies in Ford et al. (2012, 2014, 2015), the authors wanted do
the profile computations for many clusters at once, while
varying the mass and the miscentering offset distribution
during the process of fitting the model to the data. What was
known were the redshifts and mass proxies (cluster richness in
Ford et al. (2014, 2015), and a previous mass estimate in Ford
et al. 2012), and mass-concentration relations from the
literature, so the ClusterEnsemble() framework made
sense. However, if someone wanted to simply calculate
the NFW profiles according to the Wright & Brainerd
(2000) formulation, then they might prefer to use

SurfaceMassDensity() as a tool to get profiles directly
from the NFW and cosmological parameters rs, dc, and ()r zcrit .

2.4. Density Profile Runtime

The calculation of the standard centered NFW profiles is
fast, and the runtime is essentially constant, independent of the
number of clusters and radial bins involved. The miscentered
profile calculation on the other hand, has been optimized as
much as possible for a non-parallel pure-Python calculation,
but still requires several integrations. The runtime for the
miscentered calculation scales linearly with both numbers of
clusters and with the number of radial bins. The time to run
these calculations for different numbers of clusters and bins is
given in Table 1. A simple shortcut to decrease total runtime is
to consider binning clusters, to ensure you are not calculating a
nearly identical profile multiple times. Of course, care must be
taken to avoid stacking clusters of very different masses, as
discussed in the Introduction.

3. EXAMPLES

Here we demonstrate the calculation of NFW profiles for
some of the most massive clusters in the Canada–France–
Hawaii Telescope Lensing Survey (CFHTLenS; Heymans
et al. 2012; Erben et al. 2013) in Section 3.1, and show how
to use cluster-lensing to fit a model to your data in
Section 3.2.

3.1. Profiles of CFHTLenS Clusters

As an example use case, we take CFHTLenS public galaxy
cluster catalog, which is available on Zenodo6 (Ford 2014). This
data set was previously explored using a pre-release version of
the cluster-lensing software in Ford et al. (2014, 2015).
The W1 field of this survey contains 10,745 galaxy cluster
candidates in the redshift range of z0.2 0.9:

>>> import numpy as np
>>> data=np.loadtxt(“Clusters_W1.dat”)
>>> data.shape
(10745, 5)
>>> data[0:4, :] # print first 4 clusters
array([[34.8023, −7.01005, 0.3, 4.435, 10.],

[34.9425, -7.38996, 0.5, 4.545, 21.],
[34.8651, -6.69449, 0.5, 3.858, 6.],
[34.6224, -7.32768, 0.5, 3.619, 8.]]) >>> >>> red-
shift=data[:, 2]

>>> sig=data[:, 3]
>>> richness=data[:, 4]

We select a subset of the lower redshift clusters that were
detected at high significance. Then we import clusterlen-
sing to create a dataframe of the cluster properties, of which
we just print the first several, and calculate the NFW profiles.

>>> # select a subset
>>> here=(sig >15) & (redshift <0.5)
>>> sig[here].shape
(15,) >>> z=redshift[here]
>>> n200=richness[here]
>>>
>>> import clusterlensing
>>> c=clusterlensing.ClusterEnsemble(z)

6 http://dx.doi.org/10.5281/zenodo.51291

7

The Astronomical Journal, 152:228 (12pp), 2016 December Ford & VanderPlas

http://dx.doi.org/10.5281/zenodo.51291

(Continued)

>>> c.n200=n200
>>> c.dataframe.head()

z n200 m200 r200 c200
delt_c rs
0 0.4 181 5.897552e+14 1.531367 3.966101
5173.016417 0.386114

1 0.3 420 1.916332e+15 2.357815 3.658237
4332.615805 0.644522

2 0.4 176 5.670737e+14 1.511478 3.980218
5213.746469 0.379747

3 0.3 113 3.049521e+14 1.277703 4.341779
6324.420397 0.294281

4 0.4 162 5.049435e+14 1.454129 4.022285
5336.272412 0.361518

>>>
>>> rbins=np.logspace(np.log10(0.1),
... np.log10(10.0), num=20)
>>> c.calc_nfw(rbins)

Next,we import the matplotlib and seaborn libraries
and configure some settings to make our plots more readable.
The first plot we create with the commands below presents the

()S R profiles for every one of these 15 clustersand is given in
Figure 1.

>>> import matplotlib.pyplot as plt
>>> import seaborn as sns; sns.set()
>>> import matplotlib
>>> matplotlib.rcParams[“axes.labelsize”]=20
>>> matplotlib.rcParams[“legend.fontsize]”]=20
>>>
>>> # strings for plots
>>> raxis=“$R⧹[⧹mathrm{Mpc}]$”
>>> sgma=“$⧹Sigma(R)$”
>>> sgmaoff=“$⧹Sigma∧⧹mathrm{off}(R)$”
>>> delta=“$⧹Delta$”
>>> sgmaunits=“$[M_$⧹odot$⧹ ⧹mathrm{pc}∧{-2}]$”
>>>
>>> # order from high to low richness

(Continued)

>>> order=c.n200.argsort()[::-1]
>>>
>>> for s, n in zip(c.sigma_nfw[order], c.n200[order]):
... plt.plot(rbins, s, label=str(int(n)))
>>> plt.xscale(“log”)
>>> plt.legend(fontsize=10)
>>> plt.ylabel(sgma+sgmaunits)
>>> plt.xlabel(raxis)
>>> plt.tight_layout()
>>> plt.savefig(“f1.eps”)
>>> plt.close() # output is Figure 1

If we had made a stacked measurement of the shear or
magnification profile of these clusters, then we would want to
know what the average profile of the stack looks like. Since we
already have the individual profiles, we just need to calculate
the mean across the zeroth axis of the sigma_nfw and
deltasigma_nfw attribute arrays. The plot of these average
profiles is given in Figure 2.

>>> sigma=c.sigma_nfw.mean(axis=0)
>>> dsigma=c.deltasigma_nfw.mean(axis=0)
>>>
>>> plt.plot(rbins, sigma, label=sgma)
>>> plt.plot(rbins, dsigma, “‐‐”, label=delta+sgma)
>>> plt.legend()
>>> plt.ylim([0., 1400.])
>>> plt.xscale(“log”)
>>> plt.xlabel(raxis)
>>> plt.ylabel(sgmaunits)
>>> plt.tight_layout()
>>> plt.savefig(“f2.eps”)
>>> plt.close() # output is Figure 2

Finally, we may want to investigate whether cluster
miscentering has a significant effect on our sample. We would
calculate the miscentered profiles, given in Figure 3, which
could be compared to the centered profiles in Figure 2 to see
which is a better fit to our measurement. Below we will assume
that the miscentering offset distribution peaks at 0.1 Mpc.

Figure 1. Surface mass density profiles ()S R for all 15 clusters used in this
example. These are the most significant (S/N > 15) clusters detected at low
redshifts (<z 0.5) in the W1 field of CFHTLenS. See the text for links to
download this public data set. The legend gives the richness values estimated in
Ford et al. (2015) corresponding to each of these clusters, which are assumed to
scale with mass. They are listed from highest to lowest richness, in the same
order as the curves.

Figure 2. Average of all the surface mass density profiles ()S R for each of the
clusters shown in Figure 1 is given in blue. The green curve is the average of all
the individual differential mass density profiles ()DS R . These curves assume
clusters are perfectly centered on their NFW halos.

8

The Astronomical Journal, 152:228 (12pp), 2016 December Ford & VanderPlas

>>> offsets=np.ones(c.z.shape[0])∗0.1
>>> c.calc_nfw(rbins, offsets=offsets)
>>> sigma_offset=c.sigma_nfw.mean(axis=0)
>>> dsigma_offset=c.deltasigma_nfw.mean(axis=0)
>>>
>>> plt.plot(rbins, sigma_offset, label=sgmaoff)
>>> plt.plot(rbins, dsigma_offset, “‐‐”,
... label=delta+sgmaoff)
>>> plt.legend()
>>> plt.ylim([0., 1400.])
>>> plt.xscale(“log”)
>>> plt.xlabel(raxis)
>>> plt.ylabel(sgmaunits)
>>> plt.tight_layout()
>>> plt.savefig(“f3.eps”)
>>> plt.close() # output is Figure 3

The above example shows a simple application of
cluster-lensing to a real data set—a subset of the
CFHTLenS cluster catalog. For this example,we kept the
customizations to a minimum, but as shown in Sections 2.3, the
user can alter the parameters in the power-law relation used to
convert richness to mass, choose the form of the mass-
concentration relation assumed for the NFW profiles, and
specify a particular background cosmology. When fitting a
model produced by cluster-lensing to a measurement,
one could iterate through parameters in this space by setting
various attributes of the ClusterEnsemble() object (as
done, e.g., in Ford et al. 2014, 2015).

3.2. Fitting a Model

This example demonstrates the use of the emcee package
(Foreman-Mackey et al. 2013), to draw Markov chain Monte
Carlo samples for fitting a model to a measurement of galaxy
cluster shear. We start by creating a synthetic measurement, by
using cluster-lensing to create a miscentered ()DS R
profile to which we add some random scatter. Our goal will be
to estimate both the mass and the centroid offset of the fake
cluster (which has true = M M10200

14 and s = 0.3off Mpc), by

fitting the offset halo model provided by cluster-len-
sing. We will assume the cluster redshifts z=0.2 are known.

>>> import numpy as np
>>> from clusterlensing import ClusterEnsemble
>>>
>>> logm_true=14
>>> off_true=0.3
>>>
>>> nbins=10
>>> rbins=np.logspace(np.log10(0.1), np.log10(5),
... num=nbins)
>>> redshift=[0.2]
>>> cdata=ClusterEnsemble(redshift)
>>> cdata.m200=[10∗∗logm_true]
>>> cdata.calc_nfw(rbins=rbins, offsets=[off_true])
>>> dsigma_true=cdata.deltasigma_nfw.mean(axis=0).
value

>>>
>>> # add scatter with a stddev of 20% of data
>>> noise=np.random.normal(scale=dsigma_true∗0.2,
... size=nbins)
>>> y=dsigma_true + noise
>>> yerr=np.abs(dsigma_true/3) # 33% error bars

We follow a Bayesian approach, and define functions for the
likelihood and posterior probabilities. We use an uninformative
flat prior, which is constant in the reasonable ranges of

()< <M M10 log 16200 and s< <0 5off Mpc, and zero
outside of those ranges.

>>> # probability of the data given the model
>>> def lnlike(theta, z, rbins, data, stddev):
... logm, offsets=theta
...
... # calculate the model
... c=ClusterEnsemble(z)
... c.m200=[10∗∗logm]
... c.calc_nfw(rbins=rbins, offsets=[offsets])
... model=c.deltasigma_nfw.mean(axis=0).value
...
... diff=data — model
... lnlikelihood=-0.5 ∗ np.sum(diff∗∗2 / stddev∗∗2)
... return lnlikelihood
>>>
>>> # uninformative prior
>>> def lnprior(theta):
... logm, offset=theta
... if 10 <logm <16 and 0.0 <=offset <5.0:
... return 0.0
... else:
... return -np.inf
>>>
>>> # posterior probability
>>> def lnprob(theta, z, rbins, data, stddev):
... lp=lnprior(theta)
... if not np.isfinite(lp):
... return -np.inf
... else:
... return lp + lnlike(theta, z, rbins, data, stddev)

With the help of emcee (Foreman-Mackey et al. 2013), we
use 20 walkers to draw 500 samples each from the posterior.
The sampling process below took 49 minutes to run (on a
recent MacBook Pro), which is significant because of the
miscentering integrations involved. As shown in Table 1, the

Figure 3. Same as Figure 2 but for miscentered profiles. Cluster centroid
offsets are assumed to follow a Rayleigh probability distribution (Equation (11),
discussed in Section 2.1), which is convolved with the perfectly centered
profiles to achieve this result.

9

The Astronomical Journal, 152:228 (12pp), 2016 December Ford & VanderPlas

calculations can be many times faster for the centered
cluster case.

>>> import emcee
>>>
>>> ndim=2
>>> nwalkers=20
>>> p0=np.random.rand(ndim∗nwalkers).reshape

((nwalkers,
... ndim))
>>> p0[:, 0]=p0[:, 0] + 13.5
>>>
>>> sampler=emcee.EnsembleSampler(nwalkers, ndim,

lnprob,
... args=(redshift, rbins,
... y, yerr),
... threads=8)
>>>
>>> pos, prob, state=sampler.run_mcmc(p0, 500)

Finally, we use the corner module (Foreman-
Mackey 2016) to neatly display the results. We discard a
burn-in period encompassing the first 50 steps, which was
chosen by eye after plotting the walker positions. Figure 4
shows that the posterior distribution for the best-fit mass and
centroid offset overlaps with the input values (blue lines).

>>> import seaborn; seaborn.set()
>>> import corner
>>> import matplotlib
>>> matplotlib.rcParams[“axes.labelsize”=20
>>>
>>> burn_in_step=50
>>> samples=sampler.chain[:, burn_in_step:,
... :].reshape((-1, ndim))
>>> fig=corner.corner(samples,

(Continued)

... labels=[“$⧹mathrm{log}M_{200}$”,

... “$⧹sigma_⧹mathrm{off}$”],

... truths=[logm_true, off_true])
>>> fig.savefig(“f4.eps”) # output is Figure 4

4. RELATION TO THEEXISTING CODE

The cluster-lensing project offers some unique
capabilities over other publicly available software, most
notably the cluster miscentering calculations. Here we attempt
to compare the software presented in this work with other open
source tools that we are aware of, and show how cluster-
lensing fits into the larger ecosystem of astronomical
software.
Colossus is a Python package aimed at cosmology, halo,

and large-scale structure calculations (Diemer 2015). It was
used in work by Diemer & Kravtsov (2015) and is made
available under the MIT license.7 Much of the functionality of
cluster-lensing appears to overlap with Colossus,
including mass-concentration relations (though Colossus has
the advantage of containing many more relations from the
literature) and NFW surface mass density profiles. However,
cluster-lensing also provides the miscentered halo
calculations, which are lacking from Colossus.
While Diemer (2015) has chosen to implement basic

cosmological calculations from scratch, cluster-lensing
instead relies on external modules supplied by astropy. The
only dependencies claimed by Colossus are numpy (Walt
et al. 2011) and scipy (Jones et al. 2001), whereas
cluster-lensing additionally requires astropy
(Astropy Collaboration et al. 2013) and pandas (McKin-
ney 2010). Fewer dependencies might be seen as a positive
feature of Colossus; on the other hand, astropy could be
viewed as possibly a more robust source for standard
astronomical and cosmological calculations, since it is main-
tained by a large community of developers.
Another related set of codes is provided by Jörg Dietrich’s

NFW routines, archived on Zenodo (Dietrich 2016), and
available on GitHub.8 These Python modules calculate NFW
profiles for ()S R and ()DS R , as well as the three-dimensional
density profiles and total mass and projected mass inside a
given radius. cluster-lensing goes beyond the function-
ality of Dietrich (2016) by supplying means for calculating
cluster miscentering, and having a built-in framework for
handling many halos at once. For Dietrich (2016), the user
must provide the halo concentration (along with mass and
redshift) to the NFW() class, but additional routines are
available for converting mass to concentration, including Duffy
et al. (2008) and another by Dolag et al. (2004; a partial overlap
with the mass-concentration relations provided by cluster-
lensing). Dietrich (2016) depends on astropy for
cosmological calculations and units, similar to cluster-
lensing, as well as the numpy and scipy packages.

5. FUTURE DEVELOPMENT

Some of the future plans for cluster-lensing include
adding support for different density profiles. Currently, only the

Figure 4. Posterior probability distributions for the two estimated model
parameters, the logarithm of the mass, and the centroid offset. The true input
values of these parameters are shown by the blue lines, and are

() =M Mlog 14200 and s = 0.3off Mpc. Random noise was added to the
synthetic shear “measurement,” which is why the peaks of the distributions do
not exactly match the true input values.

7 http://www.benediktdiemer.com/code/
8 https://github.com/joergdietrich/NFW

10

The Astronomical Journal, 152:228 (12pp), 2016 December Ford & VanderPlas

http://www.benediktdiemer.com/code/
https://github.com/joergdietrich/NFW

NFW model is provided, and alternative mass density models
would make the package more complete and useful. The first
priority will be inclusion of the Einasto profile (Einasto 1965),
and later possibilities may include the generalizedNFW
(Zhao 1996). The default cosmology is currently that of
thePlanck Collaboration et al. (2014), but should be updated to
thePlanck Collaboration et al. (2015), since this is now
available as astropy.cosmology.Planck15 (the user
can currently specify this cosmology, it is just not the default).

When surface mass density profiles have to be calculated
many times for many clusters, as is the case when iterating over
parameters in the process of fitting a model, the processing time
can become lengthy. This issue is most pronounced for
calculation of miscentered profiles, which require the convolu-
tion laid out in Equations (12) and (13). One major
improvement to cluster-lensing will be the option to
use parallel-processing in these computations. The likely
structure of this parallelism will be to divide the halos in a
ClusterEnsemble() catalog object among the parallel
threads, which will calculate the profiles for each of their
assigned clusters.

All of these future developments are currently listed as issues
on the GitHub repository. This GitHub Issue tracker9 will
continue to serve as the central place for listing future
improvements and feature requests. Users and potential-users
alike are encouraged to submit ideas and requests through
that URL.

6. SUMMARY

In this work, we presented cluster-lensing, a pure-
Python package for calculating galaxy cluster profiles and
properties. We described and gave workingexamples of all the
functionality currently available, including mass-concentration
and mass-richness scaling relations, and the surface mass
density profiles ()S R and ()DS R , which are relevant for
gravitational lensing. The latter density profiles are not cluster-
specific, but apply to any mass halo that can be approximated
by the NFW prescription. The structure of cluster-
lensing is ideal for calculating properties and profiles for
many galaxy clusters at once. This “composite-halo” approach
(i.e., Ford et al. 2015), is especially useful for fitting models to
a stacked sample of clusters that span a range of mass and/or
redshift.

Compared to existing code, cluster-lensing stands
out by seemingly being the only publicly available software for
calculating miscentered halo profiles. Miscentering is a
problem of great relevance for stacked weak lensing studies
of galaxy clusters, where halo centers are imperfectly estimated
from observational data or simply not well defined (as is the
case for individual non-spherical halos—for example, in
merging systems). The resulting offsets between the assumed
and real centers change the shape of the measured shear or
magnification profile and need to be accounted for in the
modeling.

Cluster-lensing is released under the MIT license, and
archived on Zenodo (Ford 2016). It being developed in a public
repository on GitHub: http://github.com/jesford/cluster-
lensing/. Contributions to the code can be made by submitting
a pull request to the repository, and we welcome feedback,
suggestions, and feature requests through GitHub issues, or by

emailing the author. Full documentation (including much of the
content of this paper), as well as installation instructions and
examples, are available in the online documentation, at http://
jesford.github.io/cluster-lensing/. If cluster-lensing is
used in a research project, the authors would appreciate
citations to the code (i.e., Ford 2016) and this paper.

The authors are grateful for funding from the Washington
Research Foundation Fund for Innovation in Data-Intensive
Discovery and the Moore/Sloan Data Science Environments
Project at the University of Washington. J.F. acknowledges the
International Space Science Institute (ISSI), which supported
very useful workshops that helped in the development of
this work.
Software:NumPy (Walt et al. 2011), SciPy (Jones

et al. 2001), Pandas (McKinney 2010), matplotlib
(Hunter 2007), IPython (Pérez & Granger 2007), AstroPy
(Astropy Collaboration et al. 2013), Seaborn (Waskom
et al. 2016), emcee (Foreman-Mackey et al. 2013), corner
(Foreman-Mackey 2016).

REFERENCES

Andreon, S., & Hurn, M. A. 2010, MNRAS, 404, 1922
Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A,

558, A33
Bullock, J. S., Kolatt, T. S., Sigad, Y., et al. 2001, MNRAS, 321, 559
Diemer, B. 2015, Colossus: COsmology, HaLO, and Large-Scale StrUcture

ToolS, Astrophysics Source Code Library, ascl:1501.016
Diemer, B., & Kravtsov, A. V. 2015, ApJ, 799, 108
Dietrich, J. 2016, NFW: NFW, v1.0, Zenodo, doi:10.5281/zenodo.50664
Dolag, K., Bartelmann, M., Perrotta, F., et al. 2004, A&A, 416, 853
Duffy, A. R., Schaye, J., Kay, S. T., & Dalla Vecchia, C. 2008, MNRAS,

390, L64
Dutton, A. A., & Macciò, A. V. 2014, MNRAS, 441, 3359
Einasto, J. 1965, TrAlm, 5, 87
Erben, T., Hildebrandt, H., Miller, L., et al. 2013, MNRAS, 433, 2545
Ford, J. 2014, Galaxy Cluster Catalog, Zenodo, doi:10.5281/zenodo.

51291 This catalog was made public as part of work by the CFHTLenS
collaboration

Ford, J. 2016, cluster-lensing, v0.1.2, Zenodo, doi:10.5281/zenodo.51370
Ford, J., Hildebrandt, H., Van Waerbeke, L., et al. 2012, ApJ, 754, 143
Ford, J., Hildebrandt, H., Van Waerbeke, L., et al. 2014, MNRAS, 439, 3755
Ford, J., Van Waerbeke, L., Milkeraitis, M., et al. 2015, MNRAS, 447, 1304
Foreman-Mackey, D. 2016, The Journal of Open Source Software, 24
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP,

125, 306
George, M. R., Leauthaud, A., Bundy, K., et al. 2012, ApJ, 757, 2
Heymans, C., Van Waerbeke, L., Miller, L., et al. 2012, MNRAS, 427, 146
Hildebrandt, H., Muzzin, A., Erben, T., et al. 2011, ApJL, 733, L30
Hoekstra, H., Herbonnet, R., Muzzin, A., et al. 2015, MNRAS, 449, 685
Hunter, J. D. 2007, CSE, 9, 90
Jing, Y. P. 2000, ApJ, 535, 30
Johnston, D. E., Sheldon, E. S., Wechsler, R. H., et al. 2007, arXiv:astro-ph/

0709.1159
Jones, E., Oliphant, T., Peterson, P., et al. 2001, SciPy: Open source scientific

tools for Python, http://www.scipy.org/, [Online; accessed 2016-04-27]
Klypin, A., Yepes, G., Gottlöber, S., Prada, F., & Heß, S. 2016, MNRAS,

457, 4340
Komatsu, E., Dunkley, J., Nolta, M. R., et al. 2009, ApJS, 180, 330
Leauthaud, A., Finoguenov, A., Kneib, J.-P., et al. 2010, ApJ, 709, 97
Mandelbaum, R., Seljak, U., Baldauf, T., & Smith, R. E. 2010, MNRAS,

405, 2078
Mandelbaum, R., Seljak, U., & Hirata, C. M. 2008, JCAP, 8, 6
McKinney, W. 2010, in Proc. 9th Python in Science Conf., ed.

S. van der Walt & J. Millman (Washington, D.C.: IEEE), 51
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493
Oguri, M. 2014, MNRAS, 444, 147
Oguri, M., & Takada, M. 2011, PhRvD, 83, 023008
Pérez, F., & Granger, B. E. 2007, CSE, 9, 21
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2014, A&A, 571, A16

9 https://github.com/jesford/cluster-lensing/issues

11

The Astronomical Journal, 152:228 (12pp), 2016 December Ford & VanderPlas

http://github.com/jesford/cluster-lensing/
http://github.com/jesford/cluster-lensing/
http://jesford.github.io/cluster-lensing/
http://jesford.github.io/cluster-lensing/
http://adsabs.harvard.edu/abs/2010MNRAS.404.1922A
http://dx.doi.org/10.1051/0004-6361/201322068
http://adsabs.harvard.edu/abs/2013A&A...558A..33A
http://adsabs.harvard.edu/abs/2013A&A...558A..33A
http://dx.doi.org/10.1046/j.1365-8711.2001.04068.x
http://adsabs.harvard.edu/abs/2001MNRAS.321..559B
http://adsabs.harvard.edu/abs/2015ascl.soft01016D
http://adsabs.harvard.edu/abs/2015ascl.soft01016D
http://www.ascl.net/1501.016
http://dx.doi.org/10.1088/0004-637X/799/1/108
http://adsabs.harvard.edu/abs/2015ApJ...799..108D
http://dx.doi.org/10.5281/zenodo.50664
http://dx.doi.org/10.1051/0004-6361:20031757
http://adsabs.harvard.edu/abs/2004A&A...416..853D
http://dx.doi.org/10.1111/j.1745-3933.2008.00537.x
http://adsabs.harvard.edu/abs/2008MNRAS.390L..64D
http://adsabs.harvard.edu/abs/2008MNRAS.390L..64D
http://dx.doi.org/10.1093/mnras/stu742
http://adsabs.harvard.edu/abs/2014MNRAS.441.3359D
http://adsabs.harvard.edu/abs/1965TrAlm...5...87E
http://dx.doi.org/10.1093/mnras/stt928
http://adsabs.harvard.edu/abs/2013MNRAS.433.2545E
http://dx.doi.org/10.5281/zenodo.51291
http://dx.doi.org/10.5281/zenodo.51291
http://dx.doi.org/10.5281/zenodo.51370
http://dx.doi.org/10.1088/0004-637X/754/2/143
http://adsabs.harvard.edu/abs/2012ApJ...754..143F
http://dx.doi.org/10.1093/mnras/stu225
http://adsabs.harvard.edu/abs/2014MNRAS.439.3755F
http://dx.doi.org/10.1093/mnras/stu2545
http://adsabs.harvard.edu/abs/2015MNRAS.447.1304F
http://dx.doi.org/10.21105/joss.00024
http://dx.doi.org/10.21105/joss.00024
http://dx.doi.org/10.1086/670067
http://adsabs.harvard.edu/abs/2013PASP..125..306F
http://adsabs.harvard.edu/abs/2013PASP..125..306F
http://dx.doi.org/10.1088/0004-637X/757/1/2
http://adsabs.harvard.edu/abs/2012ApJ...757....2G
http://dx.doi.org/10.1111/j.1365-2966.2012.21952.x
http://adsabs.harvard.edu/abs/2012MNRAS.427..146H
http://dx.doi.org/10.1088/2041-8205/733/2/L30
http://adsabs.harvard.edu/abs/2011ApJ...733L..30H
http://dx.doi.org/10.1093/mnras/stv275
http://adsabs.harvard.edu/abs/2015MNRAS.449..685H
http://dx.doi.org/10.1109/MCSE.2007.55
http://adsabs.harvard.edu/abs/2007CSE.....9...90H
http://dx.doi.org/10.1086/308809
http://adsabs.harvard.edu/abs/2000ApJ...535...30J
astro--ph/0709.1159
astro--ph/0709.1159
http://www.scipy.org/
http://dx.doi.org/10.1093/mnras/stw248
http://adsabs.harvard.edu/abs/2016MNRAS.457.4340K
http://adsabs.harvard.edu/abs/2016MNRAS.457.4340K
http://dx.doi.org/10.1088/0067-0049/180/2/330
http://adsabs.harvard.edu/abs/2009ApJS..180..330K
http://dx.doi.org/10.1088/0004-637X/709/1/97
http://adsabs.harvard.edu/abs/2010ApJ...709...97L
http://dx.doi.org/10.1111/j.1365-2966.2010.16619.x
http://adsabs.harvard.edu/abs/2010MNRAS.405.2078M
http://adsabs.harvard.edu/abs/2010MNRAS.405.2078M
http://dx.doi.org/10.1088/1475-7516/2008/08/006
http://adsabs.harvard.edu/abs/2008JCAP...08..006M
http://dx.doi.org/10.1086/177173
http://adsabs.harvard.edu/abs/1996ApJ...462..563N
http://dx.doi.org/10.1086/304888
http://adsabs.harvard.edu/abs/1997ApJ...490..493N
http://dx.doi.org/10.1093/mnras/stu1446
http://adsabs.harvard.edu/abs/2014MNRAS.444..147O
http://dx.doi.org/10.1103/PhysRevD.83.023008
http://adsabs.harvard.edu/abs/2011PhRvD..83b3008O
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1051/0004-6361/201321591
http://adsabs.harvard.edu/abs/2014A&A...571A..16P
https://github.com/jesford/cluster-lensing/issues

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2015, arXiv:1502.
01589

Prada, F., Klypin, A. A., Cuesta, A. J., Betancort-Rijo, J. E., & Primack, J.
2012, MNRAS, 423, 3018

Schneider, P. 2006, in Saas-Fee Advanced Course 33: Gravitational Lensing:
Strong, Weak and Micro, ed. G. Meylan et al. (Berlin: Springer), 269

Sehgal, N., Addison, G., Battaglia, N., et al. 2013, ApJ, 767, 38
Simet, M., McClintock, T., Mandelbaum, R., et al. 2016, arXiv:1603.06953
Voit, G. M. 2005, RvMP, 77, 207

von der Linden, A., Allen, M. T., Applegate, D. E., et al. 2014, MNRAS,
439, 2

Walt, S. V. D., Colbert, S. C., & Varoquaux, G. 2011, CSE, 13, 22
Waskom, M., Botvinnik, O., drewokane, et al. 2016, seaborn, v0.7.0, Zenodo,

doi:10.5281/zenodo.45133
Wright, C. O., & Brainerd, T. G. 2000, ApJ, 534, 34
Yang, X., Mo, H. J., van den Bosch, F. C., et al. 2006, MNRAS, 373,

1159
Zhao, H. 1996, MNRAS, 278, 488

12

The Astronomical Journal, 152:228 (12pp), 2016 December Ford & VanderPlas

http://arxiv.org/abs/1502.01589
http://arxiv.org/abs/1502.01589
http://dx.doi.org/10.1111/j.1365-2966.2012.21007.x
http://adsabs.harvard.edu/abs/2012MNRAS.423.3018P
http://adsabs.harvard.edu/abs/2006SAAS...33..269S
http://dx.doi.org/10.1088/0004-637X/767/1/38
http://adsabs.harvard.edu/abs/2013ApJ...767...38S
http://arxiv.org/abs/1603.06953
http://dx.doi.org/10.1103/RevModPhys.77.207
http://adsabs.harvard.edu/abs/2005RvMP...77..207V
http://dx.doi.org/10.1093/mnras/stt1945
http://adsabs.harvard.edu/abs/2014MNRAS.439....2V
http://adsabs.harvard.edu/abs/2014MNRAS.439....2V
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.5281/zenodo.45133
http://dx.doi.org/10.1086/308744
http://adsabs.harvard.edu/abs/2000ApJ...534...34W
http://dx.doi.org/10.1111/j.1365-2966.2006.11091.x
http://adsabs.harvard.edu/abs/2006MNRAS.373.1159Y
http://adsabs.harvard.edu/abs/2006MNRAS.373.1159Y
http://dx.doi.org/10.1093/mnras/278.2.488
http://adsabs.harvard.edu/abs/1996MNRAS.278..488Z

	1. INTRODUCTION
	2. DESCRIPTION OF THE CODE
	2.1. nfw
	2.2. cofm
	2.3. Clusters
	2.4. Density Profile Runtime

	3. EXAMPLES
	3.1. Profiles of CFHTLenS Clusters
	3.2. Fitting a Model

	4. RELATION TO THE EXISTING CODE
	5. FUTURE DEVELOPMENT
	6. SUMMARY
	REFERENCES

