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Abstract

We have investigated the probability of temporary capture of asteroids in eccentric orbits by a planet in a circular or
eccentric orbit through analytical and numerical calculations. We found that, in the limit of the circular orbit, the
capture probability is ∼0.1% of encounters to the planet’s Hill sphere, independent of planetary mass and
semimajor axis. In general, temporary capture becomes more difficult as the planet’s eccentricity (ep) increases. We
found that the capture probability is almost independent of ep until a critical value (ep

c) that is given by ;5 times the
Hill radius scaled by the planet’s semimajor axis. For >e ep p

c, the probability decreases approximately in
proportion to -ep

1. The current orbital eccentricity of Mars is several times larger than ep
c. However, since the range

of secular change in Martian eccentricity overlaps ep
c, the capture of minor bodies by Mars in the past is not

ruled out.
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1. Introduction

Irregular satellites around giant planets, which are small and
with elliptical and inclined orbits, are usually thought to be
captured passing asteroids (e.g., Jewitt & Haghighipour 2007;
Nicholson et al. 2008). The objects captured temporarily in the
Hill sphere of a planet can be permanently captured by some
energy loss (e.g., tidal dissipation, drag force from a
circumplanetary disk when it existed, or collisions with other
solid bodies in the disk). Higuchi & Ida (2016) derived
conditions for temporary capture by a planet in a circular orbit
as functions of the mass and semimajor axis of the host planet,
and clarified the range of semimajor axes of field particles for
prograde and retrograde capture.

Higuchi & Ida (2016) commented that the small eccentricity
of Jupiter does not affect the capture probability. However, the
effect of a high eccentricity like that of Mars has not been
investigated. Mars has two satellites: Phobos and Deimos. Two
major theories of the origin of these satellites are (1) in situ
formation through accretion of impact-generated debris by a
large impact inferred from the Borealis basin (e.g., Citron
et al. 2015; Rosenblatt et al. 2016), and (2) capture of asteroids
(e.g., Burns 1978). While the large impact model may explain
the circular, non-inclined orbits of Phobos and Deimos, which
is not easily explained by the capture origin, the surface
characteristics of the satellites are similar to those of primitive
asteroids. Spectral observations of Phobos and Deimos suggest
that the material of the satellites is best modeled as primitive
material, which may not be easily explained by the large impact
origin (Fraeman et al. 2014). Future sample return missions,
such as Mars Moon eXploration, will provide important clues
about the Martian satellite origin. It is important to explore the
possibility of the capture origin model in detail, as well as to
investigate the large impact model.

In this study, we generalize our previous study to investigate
the effects of orbital eccentricity of a planet on the temporary
capture probability through analytical and numerical calcula-
tions. We derive the probability of temporary capture from
encounters with the planet’s Hill sphere as a function of
planetary eccentricity ep and mass mp. If the encounter

frequency is given by other simulations, we can evaluate the
probability of temporary capture throughout the history of the
solar system. Most of our analysis and orbital calculations
assume planar orbits, but some calculations are done with small
finite inclinations. Temporary capture is a necessary condition
for permanent capture. The relation between temporary and
permanent capture will be investigated in a subsequent paper.
We summarize the assumptions, basic formulation, and

derivation of the analytical formulae in Section 2. We define
and derive the efficiency of temporary capture in Section 3. The
methods and results of numerical calculations are presented and
compared with the analytical prediction in Section 4. In
Section 5, we summarize the results and comment on the origin
of Martian satellites.

2. Analytical Derivation of Temporary Capture
Efficiency by an Eccentric Planet

We first derive analytical formulae for temporary capture by
an eccentric planet. These formulae give orbital elements of the
asteroids that can be captured, as functions of the mass,
eccentricity, and true anomaly of the host planet. As we will
show in Section 4, the analytical formulae reproduce the results
obtained through numerical orbital integrations. From the
analytical derivation, the intrinsic dynamics of temporary
capture by an eccentric planet will be revealed.

2.1. Assumptions

Following Higuchi & Ida (2016), we split a coplanar three-
body problem (Sun–planet–particle) into two independent two-
body problems (Sun–particle and planet–particle). The particles
are candidates that are captured by the planet to become
satellites. Hereafter, we refer to particles as “asteroids,”
although the particles do not necessarily originate from the
asteroid belt. We identify the relative velocity between the
asteroid and the planet in heliocentric orbits with the satellite
velocity orbiting around the planet (condition [1]) at the capture
point. The capture points are assumed to be the L1 and L2
points (condition [2]). The distance of the points from the
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where mp is the planet mass and M is the solar mass. The
instantaneous heliocentric distance is given by
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where ap, mp, ep, and fp are semimajor axis, mass, eccentricity,
and true anomaly of the planet, respectively. We also assume
the geometric condition that the two elliptic orbits are touching
at a capture point; the velocity vectors of the planet and the
asteroid are parallel or antiparallel (condition [3]).

2.2. Conditions for Temporary Capture

We consider an asteroid and a planet in Cartesian
coordinates (x, y) centered on the Sun. The x-axis is toward
the perihelion of the planet’s orbit and the x–y plane lies in the
planet’s orbital plane. Let r, a, e, and f be heliocentric distance,
semimajor axis, eccentricity of the asteroid, and true anomaly,
respectively.

Condition [2] reads as
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The heliocentric velocity of the asteroid at capture is
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Condition [1] reads as

- = ( )v v v , 8p s

where v and vp are heliocentric velocities of the asteroid and the
planet and vs is the planetocentric velocity of the asteroid as a
satellite at capture. The velocity of the satellite at the
planetocentric distance =r rs H is
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where = Fa rs H s is the planetocentric semimajor axis of the
satellite,

F =
-

+
( )e

e f

1

1 cos
, 10s

s
2

s s

= =
F

ˆ ( )v
Gm

r
r

3
, 11H

p

H p
H

and es and fs are the planetocentric eccentricity and true
anomaly. Since vH is a circular velocity around the planet at the
planetocentric distance =r rs H,

n = = - F ( )v v 2 12s H s

is related to the planetocentric orbital eccentricity (which is
equivalent to k2 appearing in Higuchi & Ida 2016); n = 1
corresponds to a circular orbit with semimajor axis =a rs H and
the orbit is hyperbolic for n > 2 .
Condition [3] is expressed by a a= p, where α and ap are

the angles between the position and velocity vectors of the
asteroid and those of the planet, which are given by
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These angles are given geometrically, applying the law of
cosines to a triangle composed of r, the x axis, and the tangent
line of the orbit at r. Another way to derive α using the angular
momentum is found in Roy (2005).

2.3. Equation of Temporary Capture

We combine the equations describing the three conditions
above, and solve for the orbital elements of temporarily
captured asteroids.

2.3.1. Derivation of Heliocentric Orbital Elements
for Temporary Capture

Semimajor axis. Using v vp (condition [3]), n=v vs H
(Equation (9)), and c=v vp (Equation (12)), condition [1]
(Equation (8)) becomes

c n- =∣ ∣ ( )v1 . 15H

Substituting Equations (3), (4), and (6), into Equation (15), we
obtain the heliocentric semimajor axis of the asteroid at
temporary capture as
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Note that Equation (16) has four values corresponding to a
combination of prograde or retrograde and L1 or L2. If the sign
in front of 3 is “+,” the temporary capture is prograde. The
“−” sign represents retrograde capture. The sign in A
represents L1-type or L2-type (Equation (4)).
Eccentricity. The heliocentric orbital angular momentum of

the asteroid is

a= = - ( ) ( )h rv GM a esin 1 . 172

Substituting Equations (17) into condition [2] given by
Equation (3) with a a= p, we obtain the heliocentric
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eccentricity at temporary capture,
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Angle of perihelion θ. The perihelion angle at temporary
capture is easily obtained from Equation (3),
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where Equation (18) is substituted at the end.
Inclination. If the asteroid has non-zero heliocentric

inclination i, the relative velocity is modified. Since the relative
velocity is equal to vs,
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For this equation to have a solution, the inclination must satisfy
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The maximum value of i for capture is obtained with
= f 180p (F = + e1p p).

2.3.2. Dependence on fp and ep

Higuchi & Ida (2016) found that capture is mostly retrograde
for asteroids near the planetary orbit and prograde for those
from distant orbits. We found that this property does not
change for a planet in an eccentric orbit. The solutions to
Equation (16) are plotted against fp with =e 0.2p and a Jovian
mass planet for ν from n = 0 (planetocentric circular orbit
case) to n = 2 (parabolic orbit cases) in Figures 1(a) and (b).
For =f 0p , the plot shows the following:
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The asteroids from these regions to the planet’s Hill sphere
have orbital eccentricities given by Equation (18). As seen in
Figures 1(a) and (b), the boundaries of individual regions
depend on fp. The planet can capture asteroids from further
regions near perihelion ( = f 0 360p ) than near aphelion.
During a planet’s orbital period, the instantaneous Hill radius rH

and vH change. At its perihelion, vH has the largest value, so
that the planet captures asteroids from distant regions that have
large relative velocity. Equation (16) suggests that the range of
encounters, -¯ ¯a amax min , increases with mp and ep, because

µr̂ mH p
1 3 and F µ es p (for e 1p

2 ). Numerically obtained
values of āmax and āmin are plotted in Figure 2.
Figures 1(c) and (d) show the solutions to Equation (20) with

n = 2 for different values of ep. For ~e 0p , qtc covers the
range (0°–360°) as fp changes from 0° to 360°. The whole
range is covered for small values of qtc with slight modulation.
However, for ep larger than a threshold value (ep

c), the coverage
of qtc is only a part of 0°–360°. We will show that capture
probability decreases with the increase in ep when >e ep p

c.
Since we found that ep

c is largest for n = 2 , we define the
value for n = 2 with a given mp as ep

c for mp.

2.3.3. The Dependence of ep
c on the Planetary Mass

The values of ep
c are obtained numerically, by finding the

point satisfying q =d df 0tc p . Figure 3 shows ep
c for four types

of temporary capture for n = 2 as a function of mp. The
dependence of ep

c on mp is approximately given

by µ ˆe r m5c H p
1 3.

In the figure, the current values of the eccentricities of eight
planets of the solar system are also plotted. The bars attached to
the points show the maximum variation ranges over past 10
Myr, calculated following the method developed by Ito et al.
(1995) which is based on the secular perturbation theory of
Laskar (1988). As we will show later, the analytically derived
values of ep, beyond which the temporary capture probability
drops, agree with the results obtained by numerical orbital
integration. Jupiter, Saturn, and Neptune always have <e ep p

c.
This means that their rates of temporary capture have remained
relatively high. The maximum ep values for Venus, Earth, and
Uranus are slightly higher than ep

c but the current values and
most of the error-bar ranges of ep are below ep

c.
Mars, which has relatively high ep, apparently has less chance

to capture asteroids with its current orbit. However, the bar of ep
for Mars shows that the Martian ep can have values much smaller
than ep

c during orbital variations. Mercury has never had <e ep p
c.

3. The Efficiency of Temporary Capture
by an Eccentric Planet

Now we estimate the dependences of the probability of
temporary capture on ep and mp of the host planet. We define
the probability as K Ktc enc, where Kenc and Ktc are the phase
space volume that satisfies the conditions for encounters with
the planet’s Hill sphere, and that for temporary capture,
respectively. Encounters with the Hill sphere are defined as
those with minimum distance to the planet less than their
instantaneous Hill radius rH. For simplicity, we here set
= +( )r a e1 2p p p

2 . For example, we consider a close
encounter orbit with <ā 1. The maximum eccentricity e1 is

3
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required for an orbit with its aphelion at the L2 point;

+ = + +  +

= +
+⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

¯ ( ) ( ˆ )

ˆ
¯

( )

a e e r e

e
r

a

1 1
1

2
1 1

1
1

2

1
. 24

1 p
2

H 1

p
2 H

In a similar way, the minimum eccentricity e2 satisfies

+ = + -  +

= +
-⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

¯ ( ) ( ˆ )

ˆ
¯

( )

a e e r e

e
r

a

1 1
1

2
1 1

1
1

2

1
. 25

2 p
2

H 2

p
2 H

Then, the range of eccentricity for close encounters is given by
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The range of eccentricity for close encounters with >ā 1 is the
same. The range of the angle of perihelion for close encounters
is q pD 2 , where we can set qD = r̂2 H. Then we obtain Kenc as
the phase space volume by integrating q pD D·e 2 over ā with
the time weight (µ -ā 3 2),
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where we assumed a uniform a-distribution of asteroids. We
use ā Ltc,min, 1 and ā Ltc,max, 2 for āmin and āmax , which are
obtained from Equation (16). We set the upper limit of

=ā 3max to avoid divergence in the calculation of Kenc. This is
used only in cases of Jovian mass planets. Assuming e 1p

and r̂ 1H , one can find that µ ˆK renc H
3 .

Figure 1. Solutions to Equations (16) are plotted against fp with =e 0.2p and a Jovian mass planet for n = 0(black), 0.1 (orange), 0.2 (light blue), 0.5 (green), 1
(yellow), and 2 (blue): (a) L1-type and (b) L2-type captures. The solutions to Equations (19) with n = 2 and a Jovian mass planet are plotted for =e 0p , 0.01, 0.02,
0.05, and 0.09: (c) L1-type and (d) L2-type captures. The solid and dashed curves are for prograde and retrograde captures, respectively.

4

The Astronomical Journal, 153:155 (9pp), 2017 April Higuchi & Ida



The phase space volume for temporary capture is much more
restricted than for the encounters. In a similar way as we
defined Kenc, the phase volume of temporary capture is given
by

ò ò
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Because atc, etc, and qtc are correlated, it is useful to rewrite
Detc, qD tc, and datc as n nD = D( )e de dtc tc tc tc, qD =tc

q n nD( ) ˆd d rtc tc H tc, and n n=¯ ( ¯ )da da d dtc tc tc tc. Using these
relations, we change the integral of Ktc by datc to that by
nD tc. For =e 0p , we set q gD = D · r̂tc H, where gD  1.

Because the integrands depend on fp, we also added time
averaging over an orbital period of the planet ( =T 1p ).

Thereby, the temporary capture rate is given from
Equations (16) as
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Assuming e 1p and r̂ 1H , one can find n µ( ) ˆda d rtc tc H,
and ( ¯ )de datc tc , ( )dg detc , and g are independent of r̂H. This
leads to µ ˆK rtc H

3 , which is the same as Kenc, implying that
K Ktc enc is independent of mp for e 1p .

The integration range, n n n< <min tc max , can be simply
estimated in the framework of the two-body problem (planet–
particle) as follows. The physical radius of the planet may
give the value of nmin . A planetocentric temporarily captured
orbit has its apocenter distance at + ( )a e r1s s H. The
pericenter distance, -( )a e1s s , must be larger than the
physical radius of the planet, Rp, to avoid a collision. From
these two equations,

<
-

+

( )
( )

( )e
R r

R r

1

1
36s

p H

p H

Figure 2. Ranges of initial orbital elements summarized for each planetary mass against ep (top-left: Martian mass, top-right: Jovian mass, bottom-left: Earth mass, bottom-
right: Neptunian mass.) Black curves show āmax (solid) and āmin (dashed) on the left y-axis and orange curves show emax (solid) and emin (dashed) on the right y-axis.
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Since n k= = - e1 s for =f 0s ,

n =
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R r

R r
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1
. 37min

p H

p H
p H

The simplest assumption for the maximum value in the
framework of the two-body problem is n = 2max , which is
the upper limit for an elliptic orbit around the planet. However,
the effect of the third body (the Sun) changes them. We found
that it is more appropriate to assume n = 0.25min and n = 2max

for a prograde trap and n = 0.5min and n = 2max for a
retrograde trap from the orbital calculations described below.
We adopt these integration ranges.

Figure 4 shows the ratio K Ktc enc as a function of ep for
planets with Martian, Jovian, Earth, and Neptunian mass. Each
plot has four curves for the temporary capture types, and the sum
of the four types (the black line). The total ratio (black) is almost
constant or gradually increases with ep until ep exceeds ep

c. The
asymptotic values of K Ktc enc at e 0p are independent of
planetary mass (mp) and semimajor axis (ap), as we predicted.
As shown in Figure 4,  ˆe r5p

c
H where = ´ -r̂ 4.8 10H

3 for
Mars, =r̂ 0.068H for Jupiter, =r̂ 0.01H for Earth, and

=r̂ 0.026H for Neptune. For >e e sp p
c , Ktc decays with ep

approximately µ -ep
1. As will be shown in the next section, the

functional form of the predicted K Ktc enc agrees very well with
the results of numerical orbital integrations, while the allowance
for temporary capture nD and gD cannot be estimated by
analytical arguments here. Because ν expresses the satellite
orbital energy at the Hill radius, it is expected that the allowance
nD is independent of mp and ap as well. Also the independence

of gD is expected since the angle qD tc would be a function only
of r̂H. From comparison with numerical simulations, we
empirically set nD ~ 0.025 and gD ~ 0.05.

4. Comparison with Numerical Results

We perform numerical calculations for the temporary capture
of bodies by planets with Mars, Jupiter, Earth, and Neptune
masses to evaluate the relevance of our analytical formulae.

4.1. Methods and Initial Conditions

We compute the orbital evolution of massless bodies, which
correspond to asteroids, perturbed by a planet in a circular or
eccentric orbit, using a fourth-order Hermite integration
scheme. The parameters are summarized in Table 1. The
number of massless bodies in each run is ´5 106. Asteroids
are initially uniformly distributed on the a e, -plane between

< <¯ ¯ ¯a a aL Ltc,min, tc,max,1 2, < <e e emin max , which are derived
analytically and numerically in Section 2.3.2 and summarized
in Figure 2. The parameter θ is also uniformly distributed
between 0 and p2 . We set the upper limit of =ā 3Ltc,max, 2 . In
most runs we assume i=0 for the asteroids. In several
additional runs, we give i with a uniform distribution for
< <i i0 tc,max where itc,max is given by Equation (23) for
= f 180p and n = 2 . We regard asteroids as temporarily

captured bodies if they stay within rH from the planet longer
than one orbital period Tp.
Using the planetocentric location and the relative velocity

vector to the planet, at the moment when an asteroid enters the
rH region around the planet for the first time, we define the type
of temporary capture: [prograde-L1], [retrograde-L1], [retro-
grade-L2], and [prograde-L2].
In this paper, we focus on the equilibrium state where the

ratio of temporary capture and encounter rates becomes
constant with time. To obtain this state, we first perform
several long-time calculations with 105 particles for T105

p and
choose the time range where the ratio is constant with time.
Note that Higuchi & Ida (2016) presented the cumulative
number of captured bodies over 106 years, which is not directly
compared with the results presented here.

4.2. Results

Figure 5 shows θ of the temporarily captured bodies against fp
for a Martian mass planet with various ep. The analytical
prediction (Equation (19)) for  n0 2 is also plotted. The
analytical prediction, which determines the critical eccentricity
for temporary capture (ep

c), agrees well with the numerical results.
Figure 6 shows the ratio (n ntc enc) of the temporary capture

and encounter rates as a function of ep for planets with Martian,
Jovian, Earth, and Neptunian masses. The ratio drops beyond
the predicted values of  ˆe r5p

c
H, which are 0.02, 0.27, 0.04,

and 0.1 for Martian, Jovian, Earth, and Neptunian mass
respectively. This drop of n ntc enc is well reproduced by the
analytical prediction in Figure 4.
The value of n ntc enc for <e ep p

c is ~ -10 3, which is almost
independent of the planetary mass, as predicted. We performed
additional numerical calculations using particles with <i imax

for n = 2 given by Equation (23). The results show that the
values of n ntc enc for the 3D calculations are similar to those
for the 2D calculations (within a factor of 2).

5. Summary and Discussion

In order to explore the origins of irregular or minor satellites
around the planets in the solar system, we have investigated the
probability of temporary capture through semi-analytical

Figure 3. Critical eccentricity ep
c for n = 2 plotted against mp. The curve

types indicate the capture type (solid: [prograde, L1], long-short dashed:
[retrograde, L1], dashed: [retrograde, L2], short dashed: [prograde, L2]). The
orange curve shows = ˆe r5p H. Current eccentricities of eight planets of the
solar system are also plotted against their mass. The error bars show the
variations over 10 Myr calculated following Laskar (1988).
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arguments and numerical integration. We extended the analysis of
temporary capture around a planet in a circular orbit developed by
Higuchi & Ida (2016) to that around a planet in an eccentric orbit,
allowing us to discuss the origins of the Martian satellites. We

derived the capture probability as a function of planetary mass
(mp) and eccentricity (ep). Analytical formulae reproduce the
numerical integrations very well.
We found that temporary capture occurs at ~0.1% of

encounters that enter Hill sphere of a planet, independent of mp,
ap (semimajor axis) and ep up to a critical value
 ( )e m M5 3p

c
p

1 3. For >e ep p
c, the probability decays with

increasing ep as µ - -( )ep
1 2 .

The current eccentricity of Mars is several times larger than
ep

c, so that the capture origin of Phobos and Deimos looks
unfavored. However, as shown in Figure 3, the Martian
eccentricity changes with time and can be lower than ep

c for
some fraction of time, and temporary capture may have been

Table 1
Parameters of Planets Used in Numerical Calculations

Planet ap (au) mp ( M ) ep Range

Earth 1 3.00e–06 0.004–0.36
Mars 1.52 3.72e–07 0.002–0.18
Jupiter 5.2 9.55e–04 0.01–0.9
Neptune 30.1 5.15e–05 0.005–0.5

Figure 4. Efficiency of temporary capture K Ktc enc plotted against ep for planets with Martian (top-left), Jovian (top-right), Earth (bottom-left), and Neptunian
(bottom-right) mass using n = 0.25min and n = 2max for prograde and n = 0.5min and n = 2max for retrograde. We set nD ~ 0.025 and gD ~ 0.05. The Ktc for each
temporary capture type is plotted in color; [prograde, L1] (green), [retrograde, L1] (blue), [retrograde, L2] (orange), and [prograde, L2] (pink). The black curve shows
the sum of the four types. We adopt Equation (35) for Ktc if Ktc with Equation (29) for <e ep p

c is less than that with Equation (35).
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Figure 5. Argument of perihelion of temporarily captured bodies by a Martian mass planet with various ep at the moment of entering the Hill sphere for the first time
plotted against fp. The solutions to Equation (19) for each temporary capture type for n = 0(black), 0.1 (orange), 0.2 (light blue), 0.5 (green), 1 (yellow), and 2 (blue)
are also plotted. Solid and dashed curves are for prograde and retrograde temporary capture, respectively. All types of temporary capture are plotted in the same panel.
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available in the past. Note again that temporary capture is a
necessary condition for permanent capture and their respective
probabilities are not necessarily proportional to each other. As
will be discussed in a separate paper, tight capture could be
found in the cases where >e ep p

c. In a subsequent paper, we
will discuss the probability of permanent capture and the
possibility of the capture origin of Phobos and Deimos.

We thank an anonymous referee for his/her useful
comments that helped to improve the paper. This work was
supported by JSPS KAKENHI grant Number 23740335 and
15H02065. Data analyses were in part carried out on the PC
cluster at the Center for Computational Astrophysics, National
Astronomical Observatory of Japan.
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