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Abstract

The secular approximation of the hierarchical three body systems has been proven to be very useful in addressing
many astrophysical systems, from planets to stars to black holes. In such a system, two objects are on a tight orbit
and the tertiary is on a much wider orbit. Here, we study the dynamics of a system by taking the tertiary mass to
zero and solve the hierarchical three body system up to the octupole level of approximation. We find a rich
dynamics that the outer orbit undergoes due to gravitational perturbations from the inner binary. The nominal result
of the precession of the nodes is mostly limited for the lowest order of approximation; however, when the octupole
level of approximation is introduced, the system becomes chaotic, as expected, and the tertiary oscillates below and
above 90°, similarly to the non-test particle flip behavior. We provide the Hamiltonian of the system and
investigate the dynamics of the system from the quadrupole to the octupole level of approximations. We also
analyze the chaotic and quasi-periodic orbital evolution by studying the surfaces of sections. Furthermore,
including general relativity, we showcase the long-term evolution of individual debris disk particles under the
influence of a far-away interior eccentric planet. We show that this dynamics can naturally result in retrograde
objects and a puffy disk after a long timescale evolution (a few Gyr) for initially aligned configuration.
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1. Introduction

The hierarchical three body secular dynamics has been
studied extensively in the literature and was shown to be very
effective in addressing different astrophysical phenomena (see,
for review, Naoz 2016, and reference therein). In this
hierarchical setting, the inner binary is orbited by a third body
on a much wider orbit, the outer binary, such that the secular
approximation can be applied (i.e., phase averaged, long-term
interaction). The gravitational potential is then expanded in
semimajor axis ratio (a a1 2, which, in this approximation,
remains constant), where a1 (a2) is the semimajor axis of the
inner (outer) body (Kozai 1962; Lidov 1962). This ratio is a
small parameter due to the hierarchical configuration. The
lowest order of approximation, which is proportional to
a a1 2

2( ) is called the quadrupole-level.
Most of these studies focus on the gravitational perturba-

tions that a far-away perturber exerts on the inner binary. In
early studies of high-inclination secular perturbations
(Kozai 1962; Lidov 1962), the outer orbit was assumed to
be circular, and it was assumed that one of the inner binary
members is a massless test particle. In this situation, the
component of the inner orbit’s angular momentum along the
z-axis (which is set to be parallel to the total angular
momentum, i.e., the invariable plane) is conserved, and the
lowest order of the approximation, the quadrupole approx-
imation, is valid. However, relaxing either one of these
assumptions leads to qualitative different behavior (e.g., Katz
et al. 2011; Lithwick & Naoz 2011; Naoz et al. 2011).
Considering systems beyond the test particle approximation,
or a circular orbit, requires the next level of approximation,
called the octupole level of approximation, which is
proportional to a a1 2

3( ) (e.g., Harrington 1968, 1969; Ford
et al. 2000; Blaes et al. 2002). In the octupole level of

approximation, the inner orbit eccentricity may reach extreme
values (Ford et al. 2000; Naoz et al. 2013a; Teyssandier et al.
2013; Li et al. 2014c). In addition, the inner orbit can flip its
orientation, with respect to the total angular momentum (i.e.,
z-axis), from prograde to retrograde (Naoz et al. 2011).
Here, we study the secular evolution of a far-away test

particle orbiting an inner massive binary. In this case, the inner
orbit is fixed, and effectively carries all of the annular
momentum of the system, while the outer orbit undergoes a
dynamical evolution. This situation has a large range of
applications from the gravitational perturbations of binary
supermassive black holes on the surrounding stellar distribution
to the effects of planetary orbits on debris disks, Oort cloud,
and trans-Neptunian objects. From N-body simulations,
Zanardi et al. (2017) analyzed the long-term evolution of test
particles in the presence of an interior eccentric planet. Such a
study produces particles on prograde and retrograde orbits, as
well as particles whose orbital plane flips from prograde to
retrograde and back again along their evolution.
We note that Ziglin (1975) investigated the oscillations of an

outer circumbinary planet in the context of the restricted
elliptical three body problem. Later Verrier & Evans (2009)
and Farago & Laskar (2010) studied the stability of a high
inclined planet around in this situation using a combination of
numerical and perturbation theory up to the quadruple level of
approximation approaches (see also, Li et al. 2014a; de la
Fuente Marcos et al. 2015). Furthermore, Gallardo (2006) and
Gallardo et al. (2012) studied the effects of the Kozai–Lidov
for trans-Neptunian objects near mean motion resonance with
Neptune. However, here, we do not allow for mean motion
resonances to allow for the double averaging process (see Naoz
et al. 2013a, Appendix A2 for the canonical transformation,
which describes the averaging process). We provide a general
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treatment for the outer test particle case, up to the octupole
level of approximation in the secular theory.

The paper is organized as follow: we begin by describing the
outer test particle Hamiltonian and equations of motion
(Section 2) and continue to discuss the quadrupole-level of
approximation (Section 3), where we also drive the relevant
timescales. Then, we study the role of the octupole level of
approximations and provide surface of section maps in Section
4. We also discuss the role of general relativity (GR) precession
in Section 5. We then consider one case study in the form of the
long-term evolution debris disk particles in Section 6. Finally,
we offer our discussions in Section 7.

2. The Equations of Motion

We solve the orbit of an exterior massless test particle to an
eccentric planet (m2), both orbiting a star (m1), including only
secular interactions expanded to octupole order. The planet is
on a fixed eccentric orbit (i.e., e const1 = ) and the outer
particle’s orbit is specified by four variables:

e , , , , 12 2 2w q W ( )

where e2 is the test particle eccentricity, icosq = and i is the
inclination of the test particle with respect to the inner orbit,
and 2w and 2W are the argument of periapse and longitude of
ascending node of the outer orbit, relative to the inner planet’s
periapse, respectively (Murray & Dermott 2000). Specifically,
we set 01v = (see Appendix A for the coordinate transforma-
tion). We kept the subscript “2” in 2w and 2W for consistency
with the comparable masses treatments. From e2 and θ we can
define the canonical specific momenta

J e1 22 2
2= - ( )

J e1 . 3z2, 2
2q= - ( )

The Hamiltonian for which m 03  is

f f f , 4Mquad oct= + ( )
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Note that unlike the inner test particle approximation, M is not
constant during the motion and the constant parameter during
the evolution is

m m
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a
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1 2
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+
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and the Hamiltonian up to the octupole level of approximation
can be defined as

f
e
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9oct
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1
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and

f f f . 10quad octd= + ˜ ( )

We note that fquad has the same functional form as the inner test
particle Fquad presented in Lithwick & Naoz (2011) up to the

e1 2
2 3 2-( ) , which is not constant in our case.

The equations of motion may be expressed as partial
derivatives of an energy function f e , , ,2 2 2w q W( )
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where τ is proportional to the true time (see Equation (29)).
Unlike the inner orbit test particle, M is not constant while e1 is
constant (in other words, the angular momentum of the inner
orbit is conserved). The equations of motion were tested
successfully compared to the general equations of motions,
presented in Naoz et al. (2013a). We also test the evolution
compared to N-body in Appendix B.

3. Quadrupole-level of Approximation

3.1. General Analysis

The quadrupole-level of approximation is integrable and thus
provides a good starting point. Unlike the quadrupole-level
approximation for the inner orbit test particle, here, the z-
component of the particle’s angular momentum is not
conserved, as the Hamiltonian depends on 2W . However, at
this level J2 is conserved, and thus the outer orbit eccentricity
e2 remains constant as the Hamiltonian does not depends on 2w .
The equation of motion for the inclination takes a simple form

d

dt

a

a P
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where we consider the time evolution and not the scaled
evolution for completeness, and P2 is the period of the outer
orbit. We can find the maximum and minimum inclination by
setting 0q =˙ . Thus, we find that the values of the longitude of
ascending nodes that satisfy this condition are n 22 pW = ,
where n 0, 1, 2 ..= . In other words, 2W has two classes of
trajectories, librating and circulating. The trajectories in the
librating region are bound between two values of 2W , while the
circulation region represents trajectories where the angles are
not constrained between two specific values. On circulating
trajectories, at 02W = , the inclination (i 90< ) is largest
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(where the i 90>  case is a mirror image of the i 90<  one).
The extrema points for the librating mode are located at

902W = . The time evolution of 2W for the quadrupole-level of
approximation is given by

d

dt

m m

m m P

a

a

e e

e

2

3 2 3 5 cos 2

8 1
. 16

2

quad

1 2

1 2
2

2

1

2

2

1
2

1
2

2

2
2 2

p

q

W
=-

+

´
+ - W

-

⎛
⎝⎜

⎞
⎠⎟( )

( )
( )

( )

In Figure 1, we show the evolution associated for the
quadrupole-level of approximation. The two librating and
circulating trajectories are considered, where we folded the 2W
angle to be between 0 180 – . The librating mode gives the
nominal precession of the nodes, at which the inclination
oscillates between the i90 inclination (the inclination for which

902W = ) and i180 90 - . The precession of the nodes was
noted before in the literature (e.g., Innanen et al. 1997).

From the latter equation and Equation (15) we have
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where a b,W is the longitude of ascending nodes that is
associated with the inclination value of icosa b a b, ,q = .
For the circulating mode, we find that, after integrating over

Equation (17) from imax to imin (and 02W = to 902W = ,
respectively) we get
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Note that this expression can be also achieved by considering
the conservation of energy between the minimum and
maximum cases. Setting the initial conditions for the energy,
Equation (6), we can find the extrema points as a function of
the initial conditions. A special case can be considered when

2W is initially set to be zero, and then the maximum inclination
is the initial inclination i0, so that
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In other words, we can set i 90max   and, for a given e1, find
the largest imin allowed, which corresponds to the separatrix.
This relationship is also apparent in the numerical results of
Figure 14 in Zanardi et al. (2017). As can be seen, for the
circulating mode depicted in Figure 1, setting initially i 20= 
corresponds to i 16 .25min =  and 10 .56 for e1=0.3 and
e1=0.9, respectively, consistent with Equation (20). A
comparison between the flip criterion and the numerical results
can be seen in Figure 9.
For the librating mode, we set imin , which is associated with

the 902W =  case, and thus integrating over Equation (17)
between i 90=  to imin (and 2 2,minW = W to 902W = ,
respectively), we get,

e e i

e
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2 3 2 8 sin

5
. 212,min
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2 2
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1
2

W =
+ - +( ) ( )

Therefore, setting initially 902W =  as in the examples
depicted in Figure 1, we find that the minimum value that 2W
can achieve in the e1=0.9 case is 59°.23 for the i 60min =  and
15°.95 for the i 20min =  example, consistent with the
numerical results. Hence, the range of which 2W is librating
on is 2 90 2,min´  - W( ).

3.2. Timescale

The timescale associated with the evolution can be estimated
from the equation of motion for 2W at the quadrupole-level
(Equation (16)), for the circulating mode, by setting d 2 pW 
and taking the terms in the parenthesis to be roughly order of
unity (which is achieved, by setting 02W  ):

t P e
m m

m m

a

a

4

3
1 circulating. 22quad 2 2
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2
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1
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For the example system depicted in Figure 1, this equation
gives a timescale of about 6 10 year7´ , for an initial
inclination of 60°, which agrees with the circulating mode
(although we note that different e1 give slightly different
timescales). We also estimate the timescale in the librating
mode by setting d 2 902 2,minW  ´  - W( ), which we have

Figure 1. The quadrupole-level of approximation evolution. We show the time
evolution of the inclination in the left panels and the cross-section trajectory in
the inclination- 2W plane, in the right panels. We consider two cases, the top
panels are for e1=0.9 and the bottom panels are for e1=0.3. We show the
following examples: in the circulating mode (setting initially 02W = ): i 20= 
(cyan), 60° (blue), and in the librating mode (setting initially 902W = ):
i 20=  (brown) and 60° (magenta). The separatrix corresponds to i 90=  for
the two different inner eccentricities is shown in red. Note that in the case of
e1=0.3 there is no librating mode for i 20= . For consistency we adopt the
following orbital parameters: m M11 = , m 11 = MJ, a 3 au1 = and a2 =
40 au, 902w =  and e 02 = .
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found earlier. Thus,
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The pre-factor of two here comes from numerical comparisons
to the examples depicted in Figure 1. Note the e1 dependency
that rises from .2,minW This timescale is consistent with the
examples depicted in Figure 1 by less than a factor of two.

4. The Role of the Octupole Level of Approximation

The octupole level of approximation can significantly affect
the overall dynamics of the general hierarchical three body
system (see Naoz 2016, and reference therein). Specifically, in
the inner test particle case, the inner orbit’s z-component of the
angular momentum is not conserved anymore, and the orbit is
allowed to flip (for a large range of initial inclinations Lithwick
& Naoz 2011; Li et al. 2014b, 2014c). In our case, the J z2, is
not conserved at the quadrupole-level, but J2 is. Thus, the
octupole level of approximation in this case allows for
variations of e2 and introduces higher-level resonances, which
may result in a chaotic behavior (see below).

In Figure 2, we consider two representative example for
which we compare the quadrupole (blue lines) and octupole
(red lines) levels of approximation, where we consider the time
evolution of the eccentricity and inclination. In both of these
examples, we consider a 1Me star orbited by an eccentric
Jupiter, with a test particle on a far-away orbit. One can
consider such a setting to represent a result of a scattering
event, for example.

On the left set of panels of Figure 2, we consider a Jupiter at
0.4 au with e1=0.65 and a test particle at 7 au with e2=0.4,
initialized on a retrograde orbit (i 91= ). With the introduction

of the octupole level of approximation to the calculation, the
test particle eccentricity starts to oscillate, though in this case it
never increases pass its initial value (due to choice of initial
conditions here). More notably, the test particle inclination,
with respect to the total angular momentum, oscillates from
retrograde ( 90>  which was the initial condition) to prograde
( 90< ). As in the more general case, there is no apparent
associated timescale for this flipping modulation, and it seems
chaotic in nature (see below). While the quadrupole-level is
circulatory in nature (see i 2- W plot), a libration behavior
emerges at the octupole level.
On the right set of panels of Figure 2, we consider a Jupiter

at 3 au with e1=0.85 and a test particle at 50 au with e2=0.7,
and the system is initialized on a prograde orbit (i 20= ).
Here, like the previous example, the outer test particle
eccentricity begins to oscillate and even grows above the
initial value. However, unlike the previous example, this
system does not flip. The inclination does oscillate with a long-
scale modulation, and we show the long-scale evolution that
captures about four octupole cycles. The system does not
exhibit a chaotic behavior in this case, and it remains in a
circulatory trajectory even after the inclusion of the octupole
level of approximation to the calculation.
In Figure 3, we zoom-in on the evolution of a different

example and also provide the time evolution of 2w for the
octupole level itself. As in the general hierarchical secular three
body problem, we find the short-scale (associated with the
quadrupole) oscillations that are modulated by the higher-level
octupole approximation. The octupole modulations take
place on timescales that are between a few tquad´ to a
few tens tquad´ .
It is interesting to note that the inclination flips shown in

Figures 2 and 3 are qualitatively different from the ordered,
back-and-forth oscillation of the quadrupole-level of approx-
imate evolution. The latter produces a simple, ordered
oscillation of the inclination angle between i0 and i180 0 - ,

Figure 2. The role of octupole. We consider two cases, the secular evolution up to the quadrupole-level of approximation (blue lines) and up to the octupole level of
approximation (red lines). We show the time evolution of the inclination and the outer orbital eccentricity (which remains constant at the quadrupole-level of
approximation). We also consider the inclination evolution as a function of 2W . Left panels: we consider the following system: m M11 = , m 12 = Mj, a 0.4 au1 = ,
a 7 au2 = , e1=0.65 and e2=0.4. We initialize the system with 02 2w = W =  and i 91= . Right panels: m M11 = , m 12 = Mj, a 3 au1 = , a 50 au2 = ,
e1=0.85 and e2=0.7. We initialize the system with 02w = , 402W =  and i 20= .
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for the librating regime. However, in the presence of the
octupole level of approximation, the system behaves similarly
to the general flips discussed in Naoz et al. (2011), where the
inclination oscillates for sometime at the prograde (i 90< )
regime and then flips to the retrograde configuration (i 90> ).

The eccentricity, e2, gives rise to an additional complication,
as the outer test particle eccentricity can essentially grow so
much that the orbits will cross. We adopt the nominal stability
criterion

a

a

e

e1
0.1 241

2

2

2
2

 =
-

< ( )

to guide us when the system leaves stability. We discuss this
stability criterion in the context of N-body comparisons in
Appendix B.

To explore the chaotic nature of the system and the different
dynamical regimes, we use surface of sections. The outer test
particle approximation reduces the general hierarchical three
body system from six degrees of freedom to four degrees of
freedom. In addition, in the test particle limit, the inner orbit is
stationary and reduces the system to two degrees of freedom. In
this system, f and δ are the only conserved parameters, and 2w
and 2W are the only coordinates that can change with time. For
a two-degrees-of-freedom system, the surface of section
projects a four-dimensional trajectory on a two-dimensional
surface, where we select intersections of the trajectories on the
surfaces when 2w and 2W move in the positive directions. For
simplicity, we separate the two initial conditions into three
characteristic parameters: e1, the inner orbit eccentricity (which
remains constant during the evolution), the energy (or initial
value of the reduced Hamiltonian f), and

m m

m m

a

a
e .1 2

1 2

1

2
1d =

-
+

Note that the energy depends on δ and e1, so in fact, although
we choose to characterize the surface of sections by three
parameters, there are only two independent ones.
In Figures 4–6, we consider the surface of sections for

various values of the f, e1, and δ in the J2 2w- plane (top row
in each figure) and in the J z2, 2- W plane (bottom row in each
figure). In both planes, we identify the resonances at which the
momenta and angles undergo bound oscillations. The trajec-
tories in this region are quasi-periodic, and the system is in the
libration mode. The circulation region represents trajectories
where the angles are not constrained between two specific
values. Both librating and circulatory trajectories are mapped
onto a one-dimensional manifold on the surface of section, and
they form lines on the section. However, chaotic trajectories are
mapped onto a higher dimensional manifold and they are filling
an area on the surface. We note that some of the trajectories in
the figures, due to sampling limitation, seem to appear as
dashed lines, but they actually represent a one-dimensional
manifold. In all of the maps, we indicate the instability regime
(light orange stripe) for which 0.1 > .
We intersect the trajectories at 22 pW = to produce the

surfaces in the J2 2w- plane, in order to capture the librating
cases. The empty regions at large J2 at the parameter spaces in
the far left and right panels in Figure 5 (i.e., for the parameters:
e=0.4, 0.02d = and f 10=  ) and the far left panel in
Figure 6 (for the parameters: e=0.9, 0.1d = and f 10= - )
correspond to regions with no physical solutions. The
variabilities in J2 are mostly small in the stable regime. We
see that there is regular behavior, i.e., trajectories that fill one-
dimensional lines on the surface of section in most of the stable
regions. We find the emergence of chaos in parts of the
unstable zones, in particular when J2 is low (e2 is high).
Considering the J z2, 2- W plane, we intersect the trajectories

at 02w = . The system exhibits a chaotic behavior across the
entire parameter regime of e ,1 d , and f. Most of the circulation
region, associated with curved, non chaotic one-dimensional
manifold, are typically associated with J 0.3z2, ∣ ∣ . The outer
orbits can flip (J z2, shifts signs) in most of the parameter space.
Resonances can be easily identified in a few of the maps.

Specifically, in the J2 2w- plots, the resonances can be found
centered near 2w p= (e.g., e 0.41 = , 0.02d = , f 10= - , and
e 0.91 = , 0.1d = , f 10= - , etc.), and 22w p= (e.g.,
e 0.41 = , 0.02d = , f=10). The dynamics is quite complicated
when e1 is higher and when δ is larger, and higher-order
resonances (appearing as small liberating islands) emerge in the
surface of section in the J2 2w- plane when e 0.91 = , 0.1d = ,
and f=0. Resonances can also be identified in the J z2, 2- W
plane, such as e1=0.9, 0.1d = , f=10.

5. The Role of the GR

As noted previously in many studies, GR precession tends to
suppress the inner orbit eccentricity excitations associated with
the Eccentric Kozai–Lidov (EKL) mechanism, and thus
suppress the flips (e.g., Naoz et al. 2013b). In our secular
case, the inner orbit is massive and the outer orbit is a test
particle, so practically the inner orbit does not feel the outer
orbit gravitational interactions. However, the inner orbit can
still precess due to GR with the nominal precession rate (e.g.,

Figure 3. We consider the system: m M11 = , m 12 = Mj, a 0.5 au1 = , a2 =
10 au, e1=0.4 and e2=0.6. We initialize the system with 02 2w = W =  and
i 85= . We show the time evolution of the orbital parameters, i.e., argument
of pericenter 2w , longitude of ascending node 2W , inclination i and the outer
orbital eccentricity, e2. We also consider the inclination evolution as a
function of 2W . Here, both 2W and 2w were folded to achieve the 0 180 –
symmetry.
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Naoz et al. 2013b)

d

dt

k m m
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where k2 is the gravitational constant and c is the speed of light.
However, in our frame of reference, where the inner orbit
carries all of the angular momentum, we are basically working
in the rotating frame of the inner orbit. Therefore, since we set

1 2w p= - - W , (see Appendix A), GR precession of 1w
translates to a precession of 2W . Thus, using our coordinate
transformation we find

d

dt

k m m

a c e

3

1
, 262

GR,

3
1 2

3 2

1
5 2 2

1
2

2

W
= -

+
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( )
( )

( )

which can suppress the inclination oscillations. The timescale
associated with that precession is the nominal GR one

t
a c e

k m m
2

1

3
. 27GR,

1
5 2 2

1
2

3
1 2

3 22 p~
-

+
W

( )
( )
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In Figure 7, we consider two examples, one for which
t 5 10 yearGR,

6
2 ~ ´W is smaller than t 6 10 yearquad

6~ ´
(top panel), and the other of which t 4.4 10 yearGR,

8
2 ~ ´W is a

bit longer than the corresponding t 2 10 yearquad
7~ ´ (bottom

panel). Both of these examples had a Sun-sized star and a
Jupiter-sized planet, orbited by a far-away test particle. The
Jupiter has a non-negligible eccentricity that perhaps can be a
result of either a scattering event or a high-eccentricity

migration. In the top panel, the Jupiter was set at a 0.5 au1 =
with e1=0.4 and the test particle was set at a 10 au2 =
and e2=0.6. The system, in the absence of GR, was in
libration mode and, as noted before, exhibited a chaotic nature.
However, the GR precession bound the system into a
circulatory regime and suppressed the flips. In the bottom
panel, the Jupiter was set at a 3 au1 = and e1=0.9, while the
test particle was set at a 40 au2 = with e2=0.65. Note that in
this latter case, although the Jupiter is rather far from the host
star and the GR precession timescale is longer than the secular
precession timescale, the GR changes the dynamics. Specifi-
cally, before the inclusion of GR precession, the system was in
a libration mode and seemed quasi-periodic. However, after the
inclusion of GR, the system exhibits both libration and
circulation, and the emergence of chaotic behavior seems to
take place. The dramatic change in dynamical behavior with
the inclusion of GR precession, even if it takes place on longer
timescales than the secular timescales, was noted previously in
both the general and inner test particle cases in Naoz et al.
(2013b).
We note that in all of our calculations below, we also take

into account the outer orbit GR precession (e.g., Naoz
et al. 2013b)

d

dt

k m m

a c e

3

1
, 282

GR,outer

3
1 2

3 2

2
5 2 2

2
2

w
=

+
-

( )
( )

( )

which typically takes place on much larger timescales.

Figure 4. Surface of section. We consider e1=0.4, 0.1d = and, from left to right f 0.2, 0= - and 0.2. We note that cases f=10 and f 10= - give a similar map to
the f=0.2 and f 0.2= - cases, respectively, and thus were not depicted, to avoid clutter. The light orange stripe marks the unstable regime, for which 0.1 > .
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6. A Study Case Application: Individual
Debris Disk Particles

Debris disks mark the late end stages of planet formation and
are made of the leftover material of rocks and ices. The
gravitational interactions between these particles and interior or
exterior companions can leave a distinct imprint on the
morphology of the disk and can cause dust production (e.g.,
Matthews et al. 2014; Rodigas et al. 2014; Nesvold &
Kuchner 2015; Lee & Chiang 2016; Nesvold et al. 2016;
Nesvold et al. 2017). Many of these studies typically focus on a
few million years of integration to allow for comparison of
observations, which usually can detect young systems. Here,
we allow for longer integration timescales and investigate the
evolution of a test particle under the influence of an eccentric
Jupiter.

In Figure 8, we show an example system, where we consider
an eccentric Jupiter at 5 au, with 0.85 eccentricity orbiting a
one-solar-mass star. The test particle is located at 55 au and
initialized with an eccentricity of 0.5. We integrate the octupole
level equations of motion in the presence of GR precession for
both the inner and outer orbits. As in the example depicted in
Figure 7, which also considered icy-body or comet reservoirs
analogs, the orbit switches between libration and circulation, as
can be seen in the bottom panel.

We consider the effect of the planet’s eccentricity, e1, and the
test particle inclination by surveying the parameter space of e1
and initial inclination for a given system, where we set
a 55 au2 = , with e2=0.5, and set the system initially with

902W =  and 02w = . Many giant exoplanets have high
eccentricities, specifically for giant planets (m isin 0.1> MJ,
with separation 0.05> au) the average eccentricity is ∼0.2, and a
maximum value of 0.97.6 Thus, an eccentric Jupiter doesn’t seem
like an unlikely configuration for a planetary system. In the
example depicted in Figure 8, the time evolution of the test
particle’s inclination that starts with a moderate eccentricity
oscillates between extreme values 20 160 ~  without increasing
its eccentricity.

The system depicted in Figure 8 is, of course, just one
example for a particular choice of the orbital parameters. To

study the effects of planet’s eccentricity and initial inclination,
we have systematically explored the e1-i parameter space in
Figure 9. We choose a Jupiter-like system (a 51 = au) and for a
range of eccentricities, with an outer orbit at 55 au. The test
particle orbit was initialized with e2=0.5, 902W = , 02w = ,
and a range of inclinations. We show the maximum inclination
reached during the evolution as a function of the initial
inclination and eccentricity in Figure 9. In the left panel, we
depict the initial inclination versus the initial Jupiter’s
eccentricity, where the color code marks the maximum
inclination reached. The solid line in the left panel follows
Equation (19), which is consistent in that the resonance
associated with the quadrupole-level of approximation is
indeed the main driver for the dynamical evolution of the
system. In the figure, we depict the initial inclination regime to
the prograde case (i 90initial  ) to avoid clutter. However, in
the right panel, we show the maximum inclination reached
during the evolution as a function of the initial inclination
going all the way to 180° this time.
As a proof of concept, we depict in Figure 10 the behavior of

a narrow debris disk after 4Gyr of evolution. This inclination
represents the instantaneous inclination at 4Gyr of evolution.
The system, of course, continues to oscillate, and the disk of
particles will remain puffed. The inclination and eccentricity of
the system at this snapshot are qualitatively different from the
initial conditions assumed. This hypothetical system shows the
orbital configuration of a disk located between 55 and 65 au,
with an interior eccentric Jupiter (e1=0.85) at 5 au around a
solar-mass star. The system was set initially with a mutual
inclination of 20°, e2=0.3 and 2W and 2w are chosen from a
random uniform distribution between 0°–360°. While the
particles in the disk have eccentric values, the disk does not
appear as a coherent eccentric ring, as the values of 2W and 2w
are random. At the end of the integration, the particles in the
disk became slightly more eccentric (with an average
eccentricity of ∼0.34), and there is a clear trend of 2W as a
function of inclination. The particles with inclination above the
initial 20° have a value of 2W close to zero (or with the
symmetric value 180°), while the particles with inclination
below 20° have 2W values closer to 90°. The behavior is
singular to 2W and has not manifested itself in 2w (it was not

Figure 5. Surface of section. We consider e1=0.4, 0.02d = (compared to Figure 4, this means changing the factor m m a a m m1 2 1 2 1 2- +( ) ( ) by factor of 5) and,
from left to right f 10, 0.2, 0, 0.2= - - , and 10. The light orange stripe marks the unstable regime, for which 0.1 > .

6 Taken from The Exoplanet Orbit Database (Wright et al. 2011).
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depicted here to avoid clutter). We note that some retrograde
particles were formed as well, in line with the Zanardi et al.
(2017) numerical results of an orbital flip. These behaviors are
easily understandable from the surface of section maps
depicted above.

Its important to note that during the evolution of the system
depicted in Figure 10, the maximum  achieved was 0.0625.
The average value of  , which corresponds to the maximum e2
achieved during the evolution, was ∼0.4. Thus, the system is

kept stable during this evolution, the secular approximation
holds, and we do not expect any scattering event. We also note
that we have compared a debris disk particles secular and
N-body evolution and found a qualitative agreement, which is
similar in behavior to the left panel of Figure 11, and this is not
shown here to avoid clutter.

7. Discussion

We have studied the secular evolution of an outer test
particle hierarchical system. We presented the three body, outer
test body Hamiltonian up to the octupole level of approx-
imation in the power series of the semimajor axis ratio. We
showed that in the quadrupole-level of approximation,

Figure 6. Surface of section. We consider e1=0.9, 0.1d = and, from left to right f 10, 0.2, 0, 0.2= - - , and 10. The light orange stripe marks the unstable regime,
for which 0.1 > .

Figure 7. The role of GR. We consider two cases, the evolution without GR
(red lines) and the evolution with GR (blue lines). Top panel: we consider the
following system: m M11 = , m 12 = Mj, a 0.5 au1 = , a 10 au2 = , e1=0.4
and e2=0.6. We initialize the system with 02 2w = W =  and i 85= . For
this system, we find that t 5 10 yearGR,inner

6~ ´ , which is much shorter than
the quadrupole timescale. Bottom panel: we consider the following system:
m M11 = , m 12 = Mj, a 3 au1 = , a 40 au2 = , e1=0.9 and e2=0.65. We
initialize the system with 902w =  and 1002W =  and i 20= . The GR
precession timescale for this system is estimated as t 4.4 10 yearGR,inner

8~ ´ ,
which is longer than the quadrupole timescale. This is a typical situation to an
individual debris disk particle or an icy-body reservoir object (see Section 6).

Figure 8. Debris disk particles. We consider the time evolution of a test particle
located at 55 au from a Me star due to the gravitational perturbations from an
eccentric Jupiter a 5 au1 = and e1=0.85. We initialized the system with
e2=0.5, 902W = , 02w = , and i 20= . We consider from top to bottom
the inclination, eccentricity, and 2W . The transition between librating and
circulating can clearly be seen in the bottom panel. When the angle is in
circulation mode, it increases in value as a function of time.
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a a1 2
2( ) , the system has two distinct behaviors, librating and

circulating (see Figure 1), where the librating mode gives the
nominal precession of the nodes, results for which the
inclination oscillates between the i90 inclination (the inclination
for which 902W =  and i180 90 - ). Furthermore, the bound
values of the liberating mode have a simple analytical
expression, Equation (21). We also found the minimum and
maximum inclination that the system can reach in the
circulating mode (see Equations (19) and (20)). These
conditions are sensitive to the initial inner orbit’s eccentricity
and are nicely reproduced in numerical testing here (see
Figure 9) and in Zanardi et al. (2017) numerical experiments
(see their Figure 14). We also estimated the timescale for
oscillations for the two modes (see Section 3.2).

We then showed that introducing the octupole level of
approximation allows for transition between the two libration

and circulation modes (see Figures 2 and 3). This yields that the
overall dynamics of the system is similar to the behavior of
the general flip behavior in the EKL mechanism. In particular,
the dynamics is quite chaotic for parameter regions with high e2
and perpendicular mutual inclinations (when J2 is low and
when J z2, is near zero), as shown in the surface of sections
Figures 4–6.
GR can play an important role in suppressing or exciting the

eccentricities in the hierarchical three body problem (e.g., Naoz
et al. 2013b). We find here similar behavior. Specifically, the
inclination excitation will be suppressed for systems with GR
precession faster than the quadrupole precession. However,
when GR precession takes place on similar (or even somewhat
larger) timescales to that of the quadrupole precession, the
additional precession can produce inclination excitations, in a
non-regular manner (see Figure 7).
The dynamics of these type of systems can have a wide

range of applications, from stars around supermassive black
hole binaries to the evolution of individual debris disk particles.
We have chosen the latter as an example and presented a
typical example of the evolution of a test particle due to the
gravitational perturbations from an eccentric Jupiter (see
Figure 8). We systematically varied the Jupiter’s eccentricity
and the outer orbit’s inclination, where we found an agreement
between the analytical relation for crossing the 90° threshold
and the numerical tests. This also suggests that an eccentric
planet can pump up the inclination of icy-body or comet-
reservoir analogs (Figure 9). This was further supported by
considering the evolution of an initially narrow, thin disk of test
particles exterior to an eccentric planet, with initial mutual
inclination of 20°. The disk became puffed with some particles
on a retrograde orbits (see Figure 10). A detailed study of the
effects of eccentric planets on exterior test particle is presented
in Zanardi et al. (2017). This mechanism will also be important,
for example, to circumbinary planetary systems (considered
first by Ziglin 1975) and the stars near mergers of black hole
binaries. However, more detailed studies are required that are
beyond the scope of this paper.

We thank the referee for a quick and detailed report, and
especially for his/her inquiry about the surface of sections. We
also thank Vladislav Sidorenko for pointing out some missing

Figure 9. Debris disk particles. We consider a Sun–Jupiter-like system, setting Jupiter at 5 au. We set the test particle at 55 au, with e2=0.5. We systematically vary
the inclination and Jupiter’s eccentricity. We initially set the system with 902W =  and 02w = . The left panel shows the initial condition map (inclination vs. the
Jupiter’s eccentricity) where the color code depicts the maximum inclination the system reached during its evolution of 4Gyr. The solid line shows the analytical
equation to reach 90°, Equation (19). The right panel shows the maximum inclination reached as a function of the initial inclination (that goes all the way to 180°). The
color code here marks the inner orbit’s eccentricity.

Figure 10. Long timescale evolution of a debris disk. The mutual inclination, i,
as a function of the semimajor axis, a2, after 4Gyr of integration. The color
code shows the longitude of ascending nodes 902W - ∣ ∣ at that time (this
presentation emphasizes the symmetry in the system). The right inset shows the
histogram of the final eccentricity of the disk, while the left inset shows the
histogram of the final mutual inclination of the disk. As a proof of concept, we
consider a narrow debris disk located between 55 and 65 au, with an interior
eccentric Jupiter (e1=0.85) at 5 au around a solar-mass star. The system was
initially set with a mutual inclination of 20°, e2=0.3 and 2W and 2w are
chosen from a random uniform distribution between 0 360 – . The results
depicted here were achieved by integrating over the equations of motion,
Equations (11)–(14). Note that GR effects are included here as well.
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Appendix A
Orbital Parameters and the Scaled Time

One might have expected that const1w = when the outer
particle is massless. But in truth, 1W is undefined because the
reference plane is aligned with the inner orbit. Therefore, the
inner planet must only have const1 1w + W = , and we may
choose without loss of generality the constant to equal zero.
Hence, elimination of the nodes (i.e., 1 2 pW - W = )
implies 1 2w p= - - W .

Similarly to the treatment done in Lithwick & Naoz (2011), we
have rescaled the momenta by an arbitrary constant to achieve the
specific angular momentum. The Hamiltonian is rescaled by the
same constant, and we find that the rescaled time is:
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where t is the true time. The numerical factor 16 comes by
taking m 03  in the general Hamiltonian (see Naoz 2016, for
the general form of the hierarchical three body double averaged
Hamiltonian). There is a choice to be made, to either scale the
Hamiltonian by this numerical factor or τ. Here, we choose to
absorb this number in τ to be consistent with the inner test
particle Hamiltonian.

Appendix B
Comparison with N-body

In this section, we compare the secular approximation at the
octupole level in the test particle limit with the N-body

Figure 11. Comparison between the N-body results and the secular approximation at the octupole level. We show the inclination, eccentricity, and 2 2wW + as a
function of time in the left-hand side and i 2- W in the right-hand panel. Red lines correspond to the secular calculation (up to the octupole level of of approximation)
and blue lines corresponds to the N-body calculation. Note that in the i 2- W , we depict the N-body results as points to allow for an easier comparison. On the left side,
we consider the following system: m M11 =  m 12 = MJ, a 0.3 au1 = , a 40 au2 = , e1=0.9, e2=0.65, 902w = , 1002W = , and i 20= . On the right side, we
consider the following system: m M11 =  m 12 = MJ, a 0.5 au1 = , a 10 au2 = , e1=0.4, e2=0.6, 02 2w = W = , and i 85= . The evolution of this system was
depicted in Figure 3, and here we show this system for a shorter evolution timescale, to allow for a better comparison between the N-body and secular calculation.

Figure 12. Comparison between the N-body results and the secular approximation
at the octupole level for systems around 0.1 ~ . We show the inclination and
eccentricity. Red lines correspond to the secular calculation (up to the octupole
level of of approximation) and blue lines corresponds to the N-body calculation.
Left side: we consider the following system: m M11 =  m 12 = MJ, a 1 au1 = ,
a 15 au2 = , e1=0.8, e2=0.8, 02w = , 902W = , and i 16= . These
parameters imply an initial  of 0.148. Right side: we consider the following
system: m M11 =  m 12 = MJ, a 3 au1 = , a 40 au2 = , e1=0.9, e2=0.65,

902w = , 1002W = , and i 20= . The latter systems initialize with 0.084 = ;
however, as time goes by the eccentricity grows and the approximation breaks.
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simulation, using Mercury code (Chambers & Migliorini 1997).
In this comparison, we did not include GR. Good agreements
can be reached when the apocenter distance of the inner binary
is much smaller than the pericenter distance of the outer binary.
In particular, we include an illustrative example here in
Figure 11, where we consider an eccentric (e=0.9 Jupiter at
3 au around a solar-like object). The test particle is set at 40 au
with e2=0.65. The system is set initially with i 20= ,

902w =  and 1002W = .
As shown in Figure 11, the secular approximation (shown as

red lines) agrees qualitatively well with the N-body results for
the eccentricity and inclination oscillations. This is likely due to
the double averaging process, but nonetheless, the maximum
and minimum of the orbital parameters are conserved in both
N-body and secular calculations. It is interesting to note that
similarly to (Lithwick & Naoz 2011), the approximation holds
as long as 0.1 < . However, unlike the inner test particle case,
e2 can change and increase during the evolution which may
break the validity of the approximation during the evolution.
This is shown in Figure 12.
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