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Abstract

We use SDSS imaging data in the ugriz passbands to study the shape of the point-spread function (PSF) profile
and the variation of its width with wavelength and time. We find that the PSF profile is well described by
theoretical predictions based on von Kármán’s turbulence theory. The observed PSF radial profile can be
parameterized by only two parameters, the profile’s full width at half maximum (FWHM) and a normalization
of the contribution of an empirically determined “instrumental” PSF. The profile shape is very similar to the
“double Gaussian plus power-law wing” decomposition used by the SDSS image-processing pipeline, but here
it is successfully modeled with two free model parameters, rather than six as in the SDSS pipeline. The FWHM
variation with wavelength follows the λα power law, where α≈−0.3 and is correlated with the FWHM
itself. The observed behavior is much better described by von Kármán’s turbulence theory, with the outer-scale
parameter in the range of 5–100 m, than by Kolmogorov’s turbulence theory. We also measure the temporal
and angular structure functions for FWHM and compare them to simulations and results from the literature.
The angular structure function saturates at scales beyond 0°. 5−1°. 0. The power spectrum of the temporal
behavior is found to be broadly consistent with a damped random-walk model with a characteristic timescale
in the range of ∼5–30 minutes, though the data show a shallower high-frequency behavior. The latter is well
fit by a single power law with an index in the range of −1.5 to −1.0. A hybrid model is likely needed to
fully capture both the low-frequency and high-frequency behavior of the temporal variations of atmospheric
seeing.
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1. Introduction

The atmospheric seeing, the point-spread function (PSF) due to
atmospheric turbulence, plays a major role in ground-based
astronomy (Roddier 1981). An adequate description of the PSF is
critical for photometry, star–galaxy separation, and unbiased
measures of the shapes of nonstellar objects (Lupton et al. 2001).
In addition, better understanding of the PSF temporal variation
can lead to improved seeing forecasts; for example, such
forecasts are considered in the optimization of the Large Synoptic
Survey Telescope (LSST) observing strategy (Ivezić et al. 2008).

Seeing varies with the wavelength of the observation, and it
also varies with time, on timescales ranging from minutes to
years. These variations, as well as the radial seeing profile, can
be understood as manifestations of atmospheric instabilities due
to turbulent layers. Although turbulence is a complex physical
phenomenon, the basic properties of the atmospheric seeing can
be predicted from first principles (Racine 2009). The von
Kármánturbulence theory, an extension of the Kolmogorov
theory that introduces a finite maximum size for turbulent eddies
(the so-called outer-scale parameter), quantitatively predicts the
seeing profile and the variation of seeing with wavelength
(Borgnino 1990; Ziad et al. 2000). Therefore, seeing measure-
ments can be used to test the theory and estimate the relevant
physical parameters.

An unprecedentedly large high-quality database of seeing
measurements was delivered by the Sloan Digital Sky Survey
(SDSS; York et al. 2000), a large-area multi-bandpass digital
sky survey. The SDSS delivered homogeneous and deep
(r22.5) photometry in five bandpasses (u, g, r, i, and z, with
effective wavelengths of 3551, 4686, 6166, 7480, and 8932Å)
accurate to about 0.02 mag for unresolved sources not limited
by photon statistics (Sesar et al. 2007). Astrometric positions
are accurate to better than 0 1 coordinate–1 for sources with
r<20.5 (Pier et al. 2003), and the morphological information
from the images allows reliable star–galaxy separation to
r<21.5 (Lupton et al. 2002).
The SDSS camera (Gunn et al. 1998) used the drift-scanning

observing mode (scanning along great circles at the sidereal
rate) and detected objects in the order r–i–u–z–g, with
detections in two successive bands separated in time by 72 s.
Each of the six camera columns produces a 13 5 wide scan; the
scans are split into “fields” 9′ long, corresponding to 36 s of
time (the exposure time is 54.1 s because the sensor size is 2k
by 2k pixels, with 0 396 pixel–1). The PSF is estimated as a
function of position within each field, although we only use one
estimate per field (always evaluated at the field center), and in
each bandpass, there are about 148 seeing estimates for each
square degree of scanned sky. As a result, the SDSS
measurements can be used to explore the seeing dependence
on time (on timescales from 1 minute to 10 hr) and wavelength
(from the UV to the near-IR), as well as its angular correlation
on the sky on scales from arcminutes to about 2°.5. Thanks to a
large dynamic range of stellar brightness, the PSF can be traced
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to large radii (∼30″) and compared to seeing profiles predicted
by turbulence theories.6

The SDSS seeing measurements represent an excellent
database that has not yet been systematically explored. Here we
utilize about a million SDSS seeing estimates to study the
seeing profile and its behavior as a function of time and
wavelength and compare our results to theoretical expectations.
The outline of this paper is as follows. In Section 2, we give a
brief description of the observations and data used in the
analysis. We describe the PSF profile analysis, including the
estimation method for the full width at half maximum (FWHM)
seeing parameter, in Section 3. In Section 4, we analyze the
dependence of FWHM on wavelength and its angular and
temporal structure functions. We present and discuss our
conclusions in Section 5.

2. Data Overview

Here we describe the SDSS data set and seeing estimates
used in this work. The selected subset of data, the so-called
Stripe 82, represents about one-third of all SDSS imaging data.

2.1. Stripe 82 Data Set

The equatorial Stripe 82 region (22h24m<R.A.<04h08m,
−1°.27<decl.<+1°.27; about 290 deg2) from the southern
Galactic cap (−64° < b<−20°) was repeatedly imaged (of
order 100 times) by SDSS to study time-domain phenomena
(such as supernovae, asteroids, variable stars, and quasar
variability). An observing stretch of SDSS imaging data is
called a “run.” Often there is only a single run for a given
observing night, though sometimes there are multiple runs per
night. In this paper, we use seeing data for 108 runs, with a
total of 947,400 fields, obtained between 1998 September and
2008 September (there are six camera columns, each with five
filters; for more details, please see Gunn et al. 2006). All runs
are obtained during the fall observing season (September to
December). Astrometric and photometric aspects of this data
set have been discussed in detail by Ivezić et al. (2007) and
Sesar et al. (2007).

2.2. The Treatment of Seeing in SDSS

Even in the absence of atmospheric inhomogeneities, the
SDSS telescope delivers images whose FWHMs vary by up to
15% from one side of a CCD to the other; the worst effects are
seen in the chips farthest from the optical axis (Gunn
et al. 2006). Moreover, since the atmospheric seeing varies
with time, the delivered image quality is a complex two-
dimensional function even on the scale of a single field (for an
example of the instantaneous image quality across the imaging
camera, see Figure7 in Stoughton et al. 2002).

The SDSS imaging PSF is modeled heuristically in each
band using a Karhunen–Loéve (K-L) transform (Lupton
et al. 2002). Using stars brighter than roughly 20th magnitude,
the PSF images from a series of five fields are expanded into
eigenimages, and the first three terms are kept (the K-L
transform is also known as the principal component analysis).
The angular variation of the eigencoefficients is fit with
polynomials, using data from the field in question plus the

immediately preceding and following half-fields. The success
of this K-L expansion is gauged by comparing PSF photometry
based on the modeled K-L PSFs with large-aperture photo-
metry for the same (bright) stars (Stoughton et al. 2002).
Parameters that characterize the seeing for one field of imaging
data are stored in the so-called psField files.7 The status
parameter flag for each field indicates the success of the K-L
decomposition.
In addition to the K-L decomposition, the SDSS processing

pipeline computes the parameters of the best-fit circular double
Gaussian to a PSF radial profile evaluated at the center of each
field. The PSF radial profile is extracted by measuring the K-L
image flux in a set of annuli, spaced approximately
exponentially. Each annulus is divided into twelve 30° cells,
and the variation of the extracted counts is used to estimate the
profile uncertainty in each annulus. The measured PSF profiles
are extended to ∼30″ using observations of bright stars, and at
such large radii, the double Gaussian fits underpredict the
measured profiles. For this reason, the fits are extended to
include the so-called “power-law wings”, which are reminis-
cent of the Moffat function,
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The measured PSFs are thus modeled using six free parameters
(σ1, σ2, σP, b, p0, and β), and the best-fit parameters are
reported in the psField files. Given that the measured profiles
only include up to 10 data points, the fits are usually excellent,
although they do not appear very robust (for examples of bad
fits, see Section 3).

3. The PSF Profile Analysis

Since the complex six-parameter PSF fit given by
Equation (1) was adopted by the SDSS processing pipeline,
significant progress has been made in validating the von
Kármánmodel of the atmosphere and measuring the associated
outer scale (see, for example, Tokovinin 2002, Boccas 2004,
and Martinez et al. 2010). In this section, we describe our much
simpler two-parameter fits to the SDSS PSF radial profiles
using the von Kármánatmosphere model.
Our fitting of each PSF radial profile is a two-step process.

We first make a one-parameter fit to the core of the PSF profile
(up to ∼1 5) to determine its FWHM. In the second step of the
fit, we model the tail of the PSF with the second parameter,
which characterizes the overall intensity of the tail. The details
of the procedure are discussed in Sections 3.1 and 3.2 below.
We note that the modeling of the PSF tail is mostly for
completeness. The focus of this study is on the FWHM
behavior. The FWHM values are determined by the first step of
the fit.

3.1. The FWHM of the PSF

The seeing profile predicted by the von Kármánatmosphere
model is a two-parameter family that can be parameterized by
the FWHM and the so-called outer-scale parameter. The
Kolmogorov seeing profile is a special case of the von

6 For most parts of this paper, we consider the SDSS PSF size the same as the
seeing, since the PSF is dominated by the atmosphere. However, the instrument
also contributes to the PSF, as discussed in the next section.

7 https://data.sdss.org/datamodel/files/PHOTO_REDUX/RERUN/RUN/
objcs/CAMCOL/psField.html
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Kármánseeing with the infinitely large outer scale. The radial
profiles of the von KármánPSF with a few different values of
outer scale are shown in Figure 1(a). In Figure 1(c), the profiles
with finite outer scales (L0) are normalized to the Kolmogorov
profile.

First, we fit the measured PSF profile to a von KármánPSF
with only one free parameter, the FWHM of the von
Kármánprofile, while a fiducial outer scale of 30 m is assumed
fixed. As is discernible from Figures 1(a) and (c), the impact of
the exact value of L0 on the profile shape is small. A fixed value
of L0 induces a small systematic uncertainty in the normal-
ization of the contribution of instrumental PSF, discussed in
Section 3.2 below. The von KármánPSF profile is generated
by creating the atmosphere structure function first, as given by
Equation (18) in Tokovinin (2002), then calculating the PSF
through the optical transfer function. The generated von
Kármánprofile has a pixel size of 0 01. Pixel integration is
then taken into account by a factor of 10 oversampling. A

convergence test has been performed to ensure that this
oversampling is adequate.
Ideally, the Fried parameter r0 would be used as the free

parameter in the fit to the von Kármánmodel. However, that
would require us to calculate the special functions and do the
Fourier transform on a large array for each function evaluation.
Instead, we opted to generate a single von KármánPSF
template with a FWHM of 1 0. In our one-parameter von
Kármánfit, we only stretch or compress the template radially to
get the best match with the data, in the least-squares sense.
Figure 1(b) shows a comparison of three PSF profiles, one
generated with a FWHM of 1 0 and the other two generated
with FWHMs of 0 5 and 2 0, then stretched and compressed
to 1 0. The three curves are seen to be almost indistinguish-
able. Figure 1(d) shows the same three profiles when normal-
ized to the one generated with a FWHM of 1 0. Repeating the
FWHM fits, as described below, with these three profiles
produces a negligible difference on the results.

Figure 1. The PSF radial profiles with the von Kármánmodel for a few different outer scale (L0) values (upper left) and r0 values (upper right). All profiles have
FWHMs of 1 0 and are normalized to unit peak intensity. The von Kármánmodel becomes Kolmogorov when = ¥L0 . In the upper right panel, the dashed and
dotted profiles are created with L0=30 m and FWHMs of 0 5 and 2 0, respectively, then stretched and compressed to 1 0. The bottom row shows the same profiles
normalized to = ¥L0 (lower left) and FWHM=1 0 (lower right).
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The χ2 is defined using the first four data points on the
measured radial profiles, at 0 16, 0 51, 0 87, and 1 44. These
points correspond to the highest photon counts and are the least
susceptible to errors in the background brightness estimates.
The error estimates on these data points come from the original
SDSS measurements.

Although the fitted curves agree with the input data points
very well, generally much better than the original six-parameter
double Gaussian fit by SDSS, they do not always describe the
PSF tail beyond an ∼15″ radius. Some examples of such fits
are shown in Figure 2. This discrepancy is easily understood
because the PSF tails in the optical bands can be different due
to the properties of the CCDs. The SDSS u, g, r, and z bands
differ only slightly due to changing conversion depth. It is
known that the i-band PSF has “stronger tails” because of
scattering in the CCD (J. E. Gunn 2018, private communica-
tion). The Si is transparent at long i-band wavelengths, so light
goes all the way through the chip, is reflected off the solder,
and passes back up through the Si. This effect is not visible in
the z band because in this case, thick front-side-illuminated
chips are used (in all other bands, thin back-side chips
are used).

3.2. The PSF Tail

To improve the fit quality at large radii, in the second fitting
step, we introduce an empirical “instrumental” PSF. Despite
the name, this component might also include effects not
modeled by the von Kármántheory, such as aerosol scattering
in the atmosphere, dust on the mirrors, and scattering in the
CCDs. The observed PSF can be expressed as a convolution of
the atmosphere, represented by the von Kármán, and the
instrumental PSF,

= Ä( ) ( )PSF vonK FWHM PSF , 2inst

where vonK is the von Kármánshape, whose only parameter,
FWHM, is fixed to the value from step one. Figure 2 shows that
the tails of the PSF can be well described using a second-order
polynomial in the logarithmic space of the intensity. Mean-
while, since PSFinst is a convolution kernel, we can use a
narrow Gaussian to describe its central core. We define the
functional form of the instrumental PSF as

s
= - +

⎛
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⎞
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Figure 2. Fits to the PSF radial profiles from run 4874, field 121. Symbols are SDSS radial profile data, extracted as described in Section 2.2 (the profile uncertainties
are smaller than the symbol size). We use filled circles for the first four data points that are used in the FWHM fits and open circles for the rest at larger radii. Red
dashed curves are the best one-parameter von Kármánfits. Black solid curves are the red curve convolved with the instrumental PSF (green dot-dashed lines), where
the scaling factor (relative normalization) for the tail component is allowed to vary. As a reference, the original “SDSS double Gaussian plus power-law wing” fits,
described by Equation (1), are shown by blue dotted lines; they sometimes fail catastrophically (see text). Note that the y-axis is shown on the logarithmic scale.
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where p(r) is a second-order polynomial. The standard
deviation of the Gaussian, σ, cannot be too wide because the
von Kármánterm already well describes the core of the PSF.
We found that σ=0 1 is an acceptable choice.

We define the second-order polynomial p as

h= + +( ) ( ) ( )p r ar br 1 . 42

Because the shape of the instrumental PSF tail should not vary
with time but does vary with the filter and camera column, we
determine the values of a and b for each band–camera–column
combination using one representative field, then we fix them at
those values for all step-two fits. For each SDSS PSF radial
profile, these one-time least-squares fits use all the data points
with radii up to ∼30″. Each fit has a, b, and η as free
parameters and involves a two-dimensional convolution (see
Equation (2)). The fits are very slow but need to be done only
once. Here we used run 94, field 11 for these one-time fits but
verified that the results are stable for other choices of run and
field. The best-fit values of a and b are listed in Table 1.
Discreteness effects are seen in the a and b values due to the
fact that the parameter boundaries in some fits have been set by
hand to prevent fits from getting stuck in local minima.

For step-two PSF fitting, parameters a and b are fixed for
each band–camera–column combination. Here η, the relative
normalization of the instrumental PSF tail in the logarithm
space, is the only free parameter. This second fitting step is also
a least-squares fit with a two-dimensional convolution using all
the data points with radii up to ∼30″. Each two-step PSF fit can
be done in a few seconds. Figure 2 shows the results of our PSF
fits from run 4874. The two-parameter fits describe the PSF
radial profiles quite well, both in the core and in the tails. The
addition of the instrumental PSF (green dot-dashed lines in
Figure 2) significantly improves the fit quality, especially in the
i band. Its impact on the encircled energy profile is shown in
Figure 3.

Figure 2 also shows the original SDSS “double Gaussian
plus power-law wing” fits, described by Equation (1). They
sometimes fail catastrophically (“catastrophic” here means a
many-σ deviation, which is statistically improbable given the
data set size), and our analysis revealed two kinds of failures:
one case is characterized by p0=10−7 and another by β=3
or 10. For the sample of 947,400 PSF fits analyzed here, each
failure case occurs with a frequency of about 12%. Inspection
of the SDSS code (findPsf.c) reveals that these values signal
bad fits that did not converge for various (unknown) reasons.

There are a total of 108 runs in the SDSS Stripe 82 data set.
Among them, run 4874 is the longest, with 981 fields. In the
rest of this paper, whenever we illustrate results from a single
run, we always use run 4874 as the fiducial example run.

4. The Analysis of FWHM Behavior

Given that the observed seeing is by and large described by a
single parameter, FWHM, here we study three aspects of its
variation in detail: dependence on wavelength, spatial (angular)
structure function, and temporal behavior. We note that details
about the seeing profile tails, including the contribution of the
instrumental profile and the i-band behavior, do not matter here
because we focus only on the FWHM behavior.

4.1. The FWHM Dependence on Wavelength

The Kolmogorov turbulence theory gives a standard formula
for the FWHM of a long-exposure seeing-limited PSF in a large
telescope(Roddier 1981),

l
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where λ is the wavelength in m, X is the airmass, r0 is the Fried
parameter in m, and FWHMKolm is in rad. We use λ0 as the
reference wavelength, and r0(λ0, 1) is the r0 for λ=λ0 and
X=1. Substituting Equation (6) into Equation (5), it is easy to
show that

lµ - ( )FWHM . 7Kolm 0.2

With the von Kármánatmosphere model, the FWHM as in
Equation (5) needs an additional correction factor that is a
function of the outer scale L0(Tokovinin 2002),
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Table 1
Values for Instrumental PSF Shape Parameters a and b

Camera Column

1 2 3 4 5 6

a(×10−4) −4.4 −4.4 −1.9 −4.4 −4.4 −4.4
u b(×10−2) 3.3 3.3 1.3 4.7 4.7 4.7

a(×10−4) −5.3 −5.3 −4.4 −4.4 −5.3 −5.3
g b(×10−2) 3.5 3.5 3.3 3.3 3.5 3.5

a(×10−4) −4.9 −4.9 −4.9 −5.8 −4.4 −4.4
r b(×10−2) 3.1 3.1 3.1 3.3 3.3 3.3

a(×10−4) −1.3 −2.2 −1.3 −1.3 −1.8 −0.4
i b(×10−2) 1.7 1.8 1.7 1.7 1.7 1.5

a(×10−4) −6.2 4.4 −6.2 −4.4 −6.2 −4.4
z b(×10−2) 4.0 2.0 4.0 3.1 4.4 4.7

Figure 3. Encircled energy distributions for PSF profiles from run 4874, field
121, r band, camera column 3. The black solid curve is for the delivered PSF
with contributions from atmosphere and instrument. The red dashed curve is
for atmosphere only.
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If a power-law approximation is attempted,

lµ a ( )FWHM , 9vonK

αbecomes a function of L0 and r0 at a specified wavelength
and airmass or, equivalently, a function of L0 and FWHMvonK.
For the subsequent analysis, we adopt the r band as the fiducial
band (with an effective wavelength of 616.6 nm).

For each run from SDSS Stripe 82 data and each camera
column, we make a least-squares fit to all of the simultaneous
FWHM measurements across the optical bands to estimate the
power-law index α (see Equation (9)). The errors on the
FWHM measurements in each optical band come from
averaging over all fields. All FWHM values are multiplied by
1/X0.6 to correct for the airmass effects.8

All FWHMs are normalized using corresponding FWHMs in
the r band taken at the same moment in time. We take into
account that the same field number does not correspond to the
same time in all filters. The scanning order in the SDSS camera
is r–i–u–z–g, with the delay between the two successive filters
corresponding to two fields. That is, if we take the field number
F for the r band, then we need to take the FWHM for the i band
from field F−2, for the u band from F−4, and so on.

Figure 4 shows such fits for run 4874. Significant deviation
from α=−0.2, predicted by the Kolmogorov model, can be

seen in most bands. We find that the fits in columns 1–5 are
always similar, while in column 6, the slope is systematically
lower. Similarly, the data in the ugri bands are well fit by the
power law, while in the z band, the data are systematically
larger than the power-law fit. For this reason, we refit the data
using only the ugri bands and average the results without using
the edge columns (1 and 6, though including column 1 does not
substantially change the results). Figure 5 shows a scatter plot
of the resulting best-fit α versus the FWHM in the r band for all
of the analyzed runs.
As discussed above, according to the von Kármánatmo-

sphere model, the power index α should be a function of the
outer scale L0 and FWHM. A correlation between α and the
FWHM is discernible in Figure 5. Similar correlations have
been seen in Subaru images and reported by Oya et al. (2016).
The data points are overlaid with curves predicted by the von
Kármánmodel, with L0 varying from 2 m to infinity. The data
clearly deviate from the Kolmogorov model prediction, which
is the horizontal line at α=−0.20, with an infinite L0. For
LSST’s fiducial FWHM of 0 6 and the commonly assumed
L0=30 m, the von Kármánmodel predicts an α value close
to −0.31.

4.2. Angular Structure Function

To examine the angular (spatial) correlation of the FWHM,
we compute the angular structure function using PSF
measurements from all six camera columns (always evaluated
at the field center using the K-L expansion). Our structure
function is defined as the rms scatter of the PSF size differences

Figure 4. Behavior of FWHM as a function of wavelength for the fiducial run 4874. Symbols are SDSS data, and solid lines are the best power-law fit, with the best-fit
slope (α) shown in the inset. For comparison purposes, the α=−0.2 (dotted) and −0.3 (dashed) lines are also shown. For the ensemble behavior of the best-fit α, see
Figure 5.

8 The airmass dependence for the von Kármánmodel is not strictly a power
law but can be approximated by a power law with good precision. By
numerically fitting a power law to Equation (8), we obtained a power-law index
of 0.63. We ignore the difference between 0.63 and 0.6, as it results in seeing
variations below 1% for the probed range of airmass.
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of pairs of stars in the same distance bin along the direction
perpendicular to the scanning direction.9 The SDSS curves are
combined for 86 Stripe 82 runs with the number of fields larger
than 100 (out of 108 runs) We also compared the structure
functions for each band separately, with and without camera
columns 1 and 6, and found no statistically significant
differences. Results for the r band are shown in Figure 6.

The structure function starts saturating at separations of
∼0°.5–1°.0, with an asymptotic value of about ∼0 05. In other
words, the seeing rms variation at large angular scales is about
5%, but we emphasize that our data do not probe scales
beyond 2°.5.

For comparison, Figure 6 also shows results from the CFHT
PSF measurements(Heymans et al. 2012) and simulated PSF
angular structure functions obtained using image simulation code
PhoSim(Peterson et al. 2015). The PhoSim PSF profiles are
obtained by simulating a grid of stars spaced by 6′ with nonper-
turbed LSST telescope and ideal sensors. The results are averaged
over nine different atmosphere realizations with different wind and
screen parameters and airmass and over three different wave-
lengths (350, 660, and 970 nm). The CFHT PSF size measure-
ments were made in the i band and provided by the authors of
Heymans et al. (2012). The three curves in Figure 6 appear to be
quantitatively consistent with each other, even though they
correspond to telescopes at different sites and with different optics.

We note that the PhoSim code could be used to further
quantitatively study the variation of seeing with outer scale and
the impact of telescope diameter; however, such detailed
modeling studies are beyond the scope of this report.

4.3. Temporal Behavior

4.3.1. Power-spectrum Analysis

To study the temporal behavior of the seeing, we first
analyze its power spectrum. Figure 7 shows the temporal power

spectral density (PSD) of the PSF FWHM for six camera
columns in run 4874, r band. The time difference between
subsequent fields is 36 s. Even though anomalies on the
wavelength dependence of the FWHM are seen in column 6, it
is clear from Figure 7 that the temporal behavior of the FWHM
does not vary with band. The temporal analysis presented in
this section includes all camera columns and optical bands. We
have repeated the analysis without using FWHM measurements
from the z band and camera columns 1 and 6 and found no
statistically significant differences in the results.
We fit the PSD using two competing models. The first is a

damped random-walk (DRW) model(for an introduction, see
Chapter 10 in Ivezić et al. 2014),

t
p t

=
+

¥( )
( )

( )f
f

PSD
SF

1 2
, 10

2 2

2

where f is the temporal frequency, ¥SF is the asymptotic value
of the structure function, and τ is the characteristic timescale.
The solid curves in Figure 7 show the fits using this model,
with f, τ, and ¥SF as free parameters. Note that due to the lack
of data toward the low-frequency end, the first and second bins
are four and two times wider than the rest of the bins,
respectively. Combining the fit results for all camera columns
and optical bands for run 4874 gives τ=23.6±1.3 minutes.
Making the same fits for all 108 runs in Stripe 82, we obtain the
τ distribution versus the duration of each run, as shown in
Figure 8 (left). The shorter runs tend to give smaller timescales.
It is plausible that short runs cannot reliably constrain τ due to
the lack of data toward the low-frequency end of the spectra.
There are 12 runs longer than 6 hr, and their characteristic
timescales are within the range of ∼5–30 minutes. This result is
generally consistent with that of Racine (1996), where a
timescale of τ=17±1 minutes was found.
The data consistently show a shallower high-frequency

behavior than predicted by DRW (∝1/f 2). In order to
quantitatively describe the high-frequency tail of the PSD, we
fit a simple power law,

= b( ) ( )f BfPSD , 11

Figure 5. Variation of the best-fit power-law index for the wavelength
dependence of FWHM, α, vs. the FWHM in the r band for all 108 Stripe 82
runs. The symbols are SDSS measurements of α based on the ugri data and
averaged over camera columns 2–5. The curves are predictions of the von
Kármánmodel, with L0 ranging from 2 m to infinity, as labeled. The data are
clearly inconsistent with Kolmogorov predictions ( = ¥L0 ) and reasonably
well described by the von Kármánmodel and L0 in the range from 5 to
∼100 m.

Figure 6. Angular structure function for the PSF size determined using CFHT
data from Heymans et al. (2012), SDSS data analyzed here, and LSST image
simulations. The SDSS measurements are averaged over 86 runs with the
number of fields larger than 100.

9 The adopted form of the structure function (SF) is closely related to the
autocorrelation function (ACF) as SF∝(1 − ACF)1/2.
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where B is the normalization factor and β is the power-law index.
Best fits are illustrated for run 4874 in Figure 7 (dashed lines).
Combining the fit results for all camera columns and filters gives
β=−1.29±0.09 for run 4874. Making the same fits for all 108
runs in Stripe 82, we obtained the β distribution versus the
duration of each run shown in Figure 8 (right). The shorter runs

give β values with a larger variance, but nevertheless it is clear
that for most runs, the high-frequency behavior can be described
with a power-law index in the range −1.5 to −1.0. We note that
Snyder et al. (2016) measured steeper slopes, though at much
higher frequencies. On the other hand, a single power law cannot
explain the turnover at low frequencies.

Figure 7. The PSF size temporal PSD for run 4874, r band. The solid lines are fits using the DRW model. The dashed lines show the best fits based on a single power
law. The former predicts a steeper high-frequency behavior, while the latter cannot explain the turnover at low frequencies.

Figure 8. Left: symbols show the best-fit characteristic timescale τ in DRW for all 108 runs in Stripe 82 vs. the duration of each run. It is plausible that short runs
cannot reliably constrain τ. The vertical dashed line indicates a run duration of 6 hr. Right: power-law index β for a single power law fit for all 108 runs vs. the
duration of each run. Note that for the majority of runs, β is larger than the value appropriate for DRW (β = −2).
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Therefore, neither model provides a satisfactory fit over the
entire frequency range: the power-law fit systematically over-
predicts the low-frequency part of the PSD, while the 1/f 2 high-
frequency behavior of the DRWmodel is too steep. It is likely that
a hybrid model would work, for example, a simple generalization
of the random-walk model (see Equation (19) in Dunkley et al.
2005):

t
p t

=
+

a

a
¥( )

( )
( )f

f
PSD

SF

1 2
. 12

2

Performing fits to our data using this model did not yield useful
results on the characteristic timescale, due to our lack of data
points at low frequency, and therefore the incapability of
constraining one additional parameter (α in Equation (12)). We
leave more detailed analysis, perhaps informed by the PhoSim
modeling, for future work.

4.3.2. Structure Function Analysis

An alternative approach to power-spectrum analysis is
offered by autocorrelation and structure function analysis.
Following Racine (1996), we define a structure function–like
quantity,

q q
q q

D =
+ D -
+ D +

( ) ∣ ( ) ( )∣
( ) ( )

( )f t
t t t

t t t
, 13

where θ is seeing. We then fit the mean value of f (Δt) with the
function

*tá D ñ = D - - D g¥( ) ( ) ( [ ( ) ]) ( )f t f t t1 exp , 141 2

with D ¥( )f t , *t , and γ as free parameters. Figure 9 (left)
shows one example of such fits. This functional form is
somewhat inspired by the DRW model, where γ=1 and the
term in brackets is raised to the power of a half. For this
particular fit in Figure 9 (left), γ is very close to 1.

The best-fit γ is found to be mostly in the range 0.5–1.5. The
distribution of *t versus the duration of each run is shown

in Figure 9 (right; somewhat arbitrarily, runs shorter than
20 minutes and those where the fitted *t is longer than two-
thirds of the duration of the run are deemed unreliable and not
shown). It is evident that for most runs, the timescale *t is in
the range of 5–30 minutes. Therefore, this analysis seems more
robust at constraining the characteristic timescale than fitting a
DRW model to an empirical PSD.

5. Discussion and Conclusions

The atmospheric seeing due to atmospheric turbulence plays
a major role in ground-based astronomy; seeing varies with the
wavelength of observation and with time on timescales ranging
from minutes to years. Better empirical and theoretical
understanding of the seeing behavior can inform the optim-
ization of large survey programs, such as LSST. Here we have
utilized for the first time an unprecedentedly large database of
about a million SDSS seeing estimates and studied the seeing
profile and its behavior as a function of time and wavelength.
We find that the observed PSF radial profile can be

parameterized by only two parameters, the FWHM of a
theoretically motivated profile and a normalization of the
contribution of an empirically determined instrumental PSF.
The profile shape is very similar to the “double Gaussian plus
power-law wing” decomposition used by the SDSS image-
processing pipeline, but here it is modeled with two free model
parameters, rather than six as in the SDSS pipeline (of course,
the SDSS image-processing pipeline had to be designed with
adequate flexibility to be able to efficiently and robustly handle
various unanticipated behaviors). We find that the PSF radial
profile is well described by theoretical predictions based on
both Kolmogorov’s and von Kármán’s turbulence theories (see
Figures 1 and 2). Given the extra degree of freedom due to the
instrumental PSF, the shape of the measured radial profile
alone is insufficient to reliably rule out either of the two
theoretical profiles.
We report empirical evidence that the wavelength depend-

ence of the atmospheric seeing and its correlation with the
seeing itself agree better with the von Kármánmodel than the

Figure 9. Left: average normalized seeing difference, á D ñ( )f t , as a function of the time separation, Δt, for run 4874, camera column 1, in the r band. The fit to
Equation (14) gives D = ¥( )f t 0.088 0.005, τ*=45.1±10.3 minutes, and γ=1.016±0.102. A DRWmodel has γ=1. Right: timescale *t vs. the duration of
each run. Note that for most runs *t is in the range of 5–30 minutes (runs shorter than 20 minutes or where the fitted *t is longer than two-thirds of the duration of the
run are left out).
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Kolmogorov turbulence theory (see Figure 5). The von
Kármánmodel predicts that the best-fit power-law index to
describe the seeing wavelength dependence in conditions
representative of the LSST survey is much closer to −0.3 than
to the usually assumed value of −0.2 predicted by the
Kolmogorov theory. We note that most of the long-term seeing
statistics are measured at visible wavelengths. The knowledge
of the wavelength dependence of the seeing is useful for
extrapolating the seeing statistics to other wavelengths, for
example, to the near-infrared, where a lot of the adaptive optics
programs operate. The PSF-sensitive galaxy measurements
require that the PSFs measured from stars be interpolated both
spatially and in color into galactic PSFs.

We have also measured the characteristic angular and
temporal scales on which the seeing decorrelates. The angular
structure function saturates at scales beyond 0°.5–1°.0. The
seeing rms variation at large angular scales is about 5%, but we
emphasize that our data do not probe scales beyond 2°.5.
Comparisons with simulations of the LSST and PSF measure-
ments at the CFHT site show good general agreement.

The power spectrum of the temporal behavior is found to be
broadly consistent with a DRW model with a characteristic
timescale in the range of ∼5–30 minutes, though the data show
a shallower high-frequency behavior. The high-frequency
behavior can be quantitatively described by a single power
law with an index in the range −1.5 to −1.0. A hybrid model is
likely needed to fully capture both the low-frequency and high-
frequency behavior of the temporal variations of atmospheric
seeing.

We conclude by noting that, while our numerical results may
only apply to the SDSS site, they can be used as useful
reference points when considering spatial and temporal
variations of seeing at other observatories.
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