We present high-definition observations with the James Webb Space Telescope (JWST) of >1000 Cepheids in a geometric anchor of the distance ladder, NGC 4258, and in five hosts of eight Type Ia supernovae, a far greater sample than previous studies with JWST. These galaxies individually contain the largest samples of Cepheids, an average of >150 each, producing the strongest statistical comparison to those previously measured with the Hubble Space Telescope (HST) in the near-infrared (NIR). They also span the distance range of those used to determine the Hubble constant with HST, allowing us to search for a distance-dependent bias in HST measurements. The superior resolution of JWST negates crowding noise, the largest source of variance in the NIR Cepheid period–luminosity relations (Leavitt laws) measured with HST. Together with the use of two epochs to constrain Cepheid phases and three filters to remove reddening, we reduce the dispersion in the Cepheid P–L relations by a factor of 2.5. We find no significant difference in the mean distance measurements determined from HST and JWST, with a formal difference of −0.01 ± 0.03 mag. This result is independent of zero-points and analysis variants including metallicity dependence, local crowding, choice of filters, and slope of the relations. We can reject the hypothesis of unrecognized crowding of Cepheid photometry from HST that grows with distance as the cause of the "Hubble tension" at 8.2σ, i.e., greater confidence than that of the Hubble tension itself. We conclude that errors in photometric measurements of Cepheids across the distance ladder do not significantly contribute to the tension.
![The American Astronomical Society logo.](https://cms.iopscience.org/8ed669b2-d09c-11e5-b0b6-759f86a2008e/aas-2018.png?guest=true)
The American Astronomical Society (AAS), established in 1899 and based in Washington, DC, is the major organization of professional astronomers in North America. Its membership of about 7,000 individuals also includes physicists, mathematicians, geologists, engineers, and others whose research and educational interests lie within the broad spectrum of subjects comprising contemporary astronomy. The mission of the AAS is to enhance and share humanity's scientific understanding of the universe.
![The Institute of Physics logo.](https://cms.iopscience.org/a56c0f0e-0439-11e9-b401-cfe9679c40e3/iop-2016.png?guest=true)
The Institute of Physics (IOP) is a leading scientific society promoting physics and bringing physicists together for the benefit of all. It has a worldwide membership of around 50 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policy makers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications.
A publishing partnership
The Astrophysical Journal Letters is an open access express scientific journal that allows astrophysicists to rapidly publish short notices of significant original research. ApJL articles are timely, high-impact, and broadly understandable.
GOLD OPEN ACCESS FROM 1 JANUARY 2022
Adam G. Riess et al 2024 ApJL 962 L17
Daniel Scolnic et al 2025 ApJL 979 L9
The Dark Energy Spectroscopic Instrument (DESI) collaboration measured a tight relation between the Hubble constant (H0) and the distance to the Coma cluster using the fundamental plane (FP) relation of the deepest, most homogeneous sample of early-type galaxies. To determine H0, we measure the distance to Coma by several independent routes, each with its own geometric reference. We measure the most precise distance to Coma from 13 Type Ia supernovae (SNe Ia) in the cluster with a mean standardized brightness of mag. Calibrating the absolute magnitude of SNe Ia with the Hubble Space Telescope (HST) distance ladder yields DComa = 98.5 ± 2.2 Mpc, consistent with its canonical value of 95–100 Mpc. This distance results in H0 = 76.5 ± 2.2 km s−1 Mpc−1 from the DESI FP relation. Inverting the DESI relation by calibrating it instead to the Planck+ΛCDM value of H0 = 67.4 km s−1 Mpc−1 implies a much greater distance to Coma, DComa = 111.8 ± 1.8 Mpc, 4.6σ beyond a joint, direct measure. Independent of SNe Ia, the HST Key Project FP relation as calibrated by Cepheids, the tip of the red giant branch from JWST, or HST near-infrared surface brightness fluctuations all yield DComa < 100 Mpc, in joint tension themselves with the Planck-calibrated route at >3σ. From a broad array of distance estimates compiled back to 1990, it is hard to see how Coma could be located as far as the Planck+ΛCDM expectation of >110 Mpc. By extending the Hubble diagram to Coma, a well-studied location in our own backyard whose distance was in good accord well before the Hubble tension, DESI indicates a more pervasive conflict between our knowledge of local distances and cosmological expectations. We expect future programs to refine the distance to Coma and nearer clusters to help illuminate this new local window on the Hubble tension.
Vishwangi Shah et al 2025 ApJL 979 L21
We report the discovery of the repeating fast radio burst (FRB) source FRB 20240209A using the Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB telescope. We detected 22 bursts from this repeater between 2024 February and July, 6 of which were also recorded at the Outrigger station k'niʔatn k'lstk'masqt (KKO). The multiple very long baseline interferometry localizations using the 66 km long CHIME–KKO baseline, each with a different baseline vector orientation due to the repeater's high decl. of ∼86°, enabled the combined localization region to be constrained to 1'' × 2''. We present deep Gemini optical observations that, combined with the FRB localization, enabled a robust association of FRB 20240209A to the outskirts of a luminous galaxy (P(O∣x) = 0.99; L ≈ 5.3 × 1010 L⊙). FRB 20240209A has a projected physical offset of 40 ± 5 kpc from the center of its host galaxy, making it the FRB with the largest host galaxy offset to date. When normalized by the host galaxy size, the offset of FRB 20240209A (5.1 Reff) is comparable to that of FRB 20200120E (5.7 Reff), the only FRB source known to originate in a globular cluster. We consider several explanations for the large offset, including a progenitor that was kicked from the host galaxy or in situ formation in a low-luminosity satellite galaxy of the putative host, but find the most plausible scenario to be a globular cluster origin. This, coupled with the quiescent, elliptical nature of the host as demonstrated in our companion Letter, provides strong evidence for a delayed formation channel for the progenitor of the FRB source.
Imad Pasha et al 2025 ApJL 980 L3
We report the discovery and multiwavelength follow-up of LEDA 1313424 ("Bullseye"), a collisional ring galaxy (CRG) with nine readily identified rings—the most so far reported for a CRG. These data shed new light on the rapid, multiring phase of CRG evolution. Using Hubble Space Telescope (HST) imaging, we identify and measure nine ring structures, several of which are "piled up" near the center of the galaxy, while others extend to tens of kiloparsecs scales. We also identify faint patches of emission at large radii (~70 kpc) in the HST imaging and confirm the association of this emission with the galaxy via spectroscopy. Deep ground-based imaging using the Dragonfly Telephoto Array finds evidence that this patch of emission is part of an older, fading ring from the collision. We find that the locations of the detected rings are an excellent match to predictions from analytic theory if the galaxy was a 10-ring system whose outermost ring has faded away. We identify the likely impacting galaxy via Keck/KCWI spectroscopy, finding evidence for gas extending between it and the Bullseye. The overall size of this galaxy rivals that of known giant low surface brightness galaxies (GLSBs) such as Malin I, lending credence to the hypothesis that CRGs can evolve into GLSBs as their rings expand and fade. Analysis of the H i content in this galaxy from ALFALFA finds significantly elevated neutral hydrogen with respect to the galaxy's stellar mass, another feature in alignment with GLSB systems.
Theodore Kareta et al 2025 ApJL 979 L8
The near-Earth asteroid (NEA) 2024 PT5 is on an Earth-like orbit that remained in Earth's immediate vicinity for several months at the end of 2024. PT5's orbit is challenging to populate with asteroids originating from the main belt and is more commonly associated with rocket bodies mistakenly identified as natural objects or with debris ejected from impacts on the Moon. We obtained visible and near-infrared reflectance spectra of PT5 with the Lowell Discovery Telescope and NASA Infrared Telescope Facility on 2024 August 16. The combined reflectance spectrum matches lunar samples but does not match any known asteroid types—it is pyroxene-rich, while asteroids of comparable spectral redness are olivine-rich. Moreover, the amount of solar radiation pressure observed on the PT5 trajectory is orders of magnitude lower than what would be expected for an artificial object. We therefore conclude that 2024 PT5 is ejecta from an impact on the Moon, thus making PT5 the second NEA suggested to be sourced from the surface of the Moon. While one object might be an outlier, two suggest that there is an underlying population to be characterized. Long-term predictions of the position of 2024 PT5 are challenging due to the slow Earth encounters characteristic of objects in these orbits. A population of near-Earth objects that are sourced by the Moon would be important to characterize for understanding how impacts work on our nearest neighbor and for identifying the source regions of asteroids and meteorites from this understudied population of objects on very Earth-like orbits.
T. Eftekhari et al 2025 ApJL 979 L22
The discovery and localization of FRB 20240209A by the Canadian Hydrogen Intensity Mapping Fast Radio Burst (CHIME/FRB) experiment marks the first repeating FRB localized with the CHIME/FRB Outriggers and adds to the small sample of repeating FRBs with associated host galaxies. Here we present Keck and Gemini observations of the host that reveal a redshift z = 0.1384 ± 0.0004. We perform stellar population modeling to jointly fit the optical through mid-IR data of the host and infer a median stellar mass log(M*/M⊙) = 11.35 ± 0.01 and a mass-weighted stellar population age ~11 Gyr, corresponding to the most massive and oldest FRB host discovered to date. Coupled with a star formation rate <0.31 M⊙ yr−1, the specific star formation rate <10−11.9 yr−1 classifies the host as quiescent. Through surface brightness profile modeling, we determine an elliptical galaxy morphology, marking the host as the first confirmed elliptical FRB host. The discovery of a quiescent early-type host galaxy within a transient class predominantly characterized by late-type star-forming hosts is reminiscent of short-duration gamma-ray bursts, Type Ia supernovae, and ultraluminous X-ray sources. Based on these shared host demographics, coupled with a large offset as demonstrated in our companion Letter, we conclude that preferred sources for FRB 20240209A include magnetars formed through merging binary neutron stars/white dwarfs or the accretion-induced collapse of a white dwarf, or a luminous X-ray binary. Together with FRB 20200120E localized to a globular cluster in M81, our findings provide strong evidence that some fraction of FRBs may arise from a process distinct from the core collapse of massive stars.
Anniek J. Gloudemans et al 2025 ApJL 980 L8
We present the discovery of a large extended radio jet associated with the extremely radio-loud quasar J1601+3102 at z ∼ 5 from subarcsecond resolution imaging at 144 MHz with the International LOFAR Telescope. These large radio lobes have been argued to remain elusive at z > 4 due to energy losses in the synchrotron emitting plasma as a result of scattering of the strong cosmic microwave background at these high redshifts. Nonetheless, the 03 resolution radio image of J1601+3102 reveals a northern and a southern radio lobe located at 9 and 57 kpc from the optical quasar, respectively. The measured jet size of 66 kpc makes J1601+3102 the largest extended radio jet at z > 4 to date. However, it is expected to have an even larger physical size in reality due to projection effects brought about by the viewing angle. Furthermore, we observe the rest-frame UV spectrum of J1601+3102 with Gemini/GNIRS to examine its black hole properties, which results in a mass of 4.5 × 108 M⊙ with an Eddington luminosity ratio of 0.45. The black hole mass is relatively low compared to the known high-z quasar population, which suggests that a high black hole mass is not strictly necessary to generate a powerful jet. This discovery of the first ∼100 kpc radio jet at z > 4 shows that these objects exist despite energy losses from inverse Compton scattering and can put invaluable constraints on the formation of the first radio-loud sources in the early Universe.
B. P. Abbott et al 2017 ApJL 848 L12
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of
Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26
. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at
) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position
and
days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
Kazumasa Ohno et al 2025 ApJL 979 L7
GJ 1214b is the archetype sub-Neptune for which thick aerosols have prevented us from constraining its atmospheric properties for over a decade. In this study, we leverage the panchromatic transmission spectrum of GJ 1214b established by the Hubble Space Telescope (HST) and JWST to investigate its atmospheric properties using a suite of atmospheric radiative transfer, photochemistry, and aerosol microphysical models. We find that the combined HST, JWST/NIRSpec, and JWST/MIRI spectrum can be well explained by atmospheric models with an extremely high metallicity of [M/H] ∼ 3.5 and an extremely high haze production rate of Fhaze ∼ 10−8 to 10−7 g cm−2 s−1. Such high atmospheric metallicity is suggested by the relatively strong CO2 feature compared to the haze absorption feature or the CH4 feature in the NIRSpec-G395H bandpass of 2.5–5 μm. The flat 5–12 μm MIRI spectrum also suggests a small scale height with a high atmospheric metallicity that is needed to suppress a prominent ∼6 μm haze feature. We tested the sensitivity of our interpretation to various assumptions for uncertain haze properties, such as optical constants and production rate, and all models tested here consistently suggest extremely high metallicity. Thus, we conclude that GJ 1214b likely has a metal-dominated atmosphere where hydrogen is no longer the main atmospheric constituent. We also find that different assumptions for the haze production rate lead to distinct inferences for the atmospheric C/O ratio. We stress the importance of high-precision follow-up observations to confirm the metal-dominated atmosphere, as it challenges the conventional understanding of interior structure and evolution of sub-Neptunes.
Brendan O'Connor et al 2025 ApJL 979 L30
We present the results of our multiwavelength (X-ray to radio) follow-up campaign of the Einstein Probe transient EP240408a. The initial 10 s trigger displayed bright soft X-ray (0.5–4 keV) radiation with peak luminosity LX ≳ 1049 (1050) erg s−1 for an assumed redshift z ≳ 0.5 (2.0). The Neil Gehrels Swift Observatory and Neutron star Interior Composition ExploreR discovered a fading X-ray counterpart lasting for ∼5 days (observer frame), which showed a long-lived (∼4 days) plateau-like emission (t−0.5) before a sharp power-law decline (t−7). The plateau emission was in excess of LX ≳ 1046 (1047) erg s−1 at z ≳ 0.5 (2.0). Deep optical and radio observations resulted in nondetections of the transient. Our observations with Gemini South revealed a faint potential host galaxy (r ≈ 24 AB mag) near the edge of the X-ray localization. The faint candidate host, and lack of other potential hosts (r ≳ 26 AB mag; J ≳ 23 AB mag), imply a higher redshift origin (z ≳ 0.5), which produces extreme X-ray properties that are inconsistent with many known extragalactic transient classes. In particular, the lack of a bright gamma-ray counterpart, with the isotropic-equivalent energy (10–10,000 keV) constrained by GECam and Konus-Wind to Eγ,iso ≲ 4 × 1050 (6 × 1051) erg at z ≈ 0.5 (2.0), conflicts with known gamma-ray bursts of similar X-ray luminosities. We therefore favor a jetted tidal disruption event as the progenitor of EP240408a at z ≳ 1.0, possibly caused by the disruption of a white dwarf by an intermediate-mass black hole. The alternative is that EP240408a may represent a new, previously unknown class of transient.
T. Moore et al 2025 ApJL 980 L44
Most stripped-envelope supernova progenitors are thought to be formed through binary interaction, losing hydrogen and/or helium from their outer layers. Ultrastripped supernovae are an emerging class of transient that are expected to be produced through envelope stripping by a neutron star companion. However, relatively few examples are known, and the outcomes of such systems can be diverse and are poorly understood at present. Here we present spectroscopic observations and high-cadence, multiband photometry of SN 2023zaw, a rapidly evolving supernova with a low ejecta mass. SN 2023zaw was discovered in a nearby spiral galaxy at D = 39.7 Mpc. It has significant Milky Way extinction, E(B − V)MW = 0.21, and significant (but uncertain) host extinction. Bayesian evidence comparison reveals that nickel is not the only power source and that an additional energy source is required to explain our observations. Our models suggest that an ejecta mass of Mej ∼ 0.07 M⊙ and a synthesised nickel mass of MNi ∼ 0.007 M⊙ are required to explain the observations. We find that additional heating from a central engine, or interaction with circumstellar material, can power the early light curve.
Davide Tornotti et al 2025 ApJL 980 L43
We detect Lyα emission from a ≈5 Mpc-long (comoving) portion of the cosmic web hosting an overdensity (δ ≈ 25) of 19 Lyα emitters (LAEs) at z ≈ 4 within the MUSE Ultra Deep Field (MUDF), reaching an average surface brightness (SB) of 5 × 10−20 erg s−1 cm−2 arcsec−2. This large-scale structure has an average SB similar to the filament across the two MUDF quasars at z ≈ 3.22. However, deep multiwavelength data do not show a clear presence of active galactic nuclei, suggesting that the emission is mainly regulated by the underlying gas density. We find ≈0.2 dex higher star formation compared to control samples and a remarkable predominance (5/7) of blue-peaked emission lines in the spectra of the embedded LAEs, indicative of favorable conditions for gas accretion. Lastly, we quantify the contribution of intragalactic gas to the Lyα SB profile at large distances from LAEs. By studying samples of filaments detected in emission within diverse environments, we are finally gaining new insight into the physics of gas accretion within the cosmic web.
Volker Perdelwitz et al 2025 ApJL 980 L42
A main source of bias in transmission spectroscopy of exoplanet atmospheres is magnetic activity of the host star in the form of stellar spots, faculae, or flares. However, the fact that main-sequence stars have a chromosphere and a corona and that these optically thin layers are dominated by line emission may alter the global interpretation of the planetary spectrum has largely been neglected. Using a JWST NIRISS/SOSS data set of hot Jupiter HAT-P-18 b, we show that even at near-IR and IR wavelengths, the presence of these layers leads to significant changes in the transmission spectrum of the planetary atmosphere. Accounting for these stellar outer layers thus improves the atmospheric fit of HAT-P-18 b and increases its best-fit atmospheric temperature from K to
K, a value much closer to the predicted equilibrium temperature of ∼852 K. Our analysis also decreases the best-fit abundance of CO2 by almost an order of magnitude. The approach provides a new window to the properties of chromospheres/corona in stars other than our Sun.
Keshav R. Tripathi et al 2025 ApJL 980 L41
The study presents the first electron density profile of the Lunar ionosphere when the Moon is inside the geomagnetic tail region. This observation used S-band telemetry and telecommand radio signals in a two-way radio occultation experiment from Chandrayaan-2 (CH-2) orbiting the Moon. The radio signals were tracked using an 18 m diameter antenna at the Indian Deep Space Network (IDSN). The IDSN served as an active source for generating and receiving the radio signal, while the onboard oscillator on CH-2 was used as a passive receiver and transmitter. The transmitted radio signal passed twice through the lunar plasma medium before reaching the receiver end. The study found a high electron density of approximately ∼2.5 × 104 per cm−3 close to the surface of the Moon. Three-dimensional lunar ionospheric model simulations show that to achieve such high plasma density, the plasma should be in photochemical equilibrium, which is possible inside the geomagnetic tail only in the presence of lunar crustal magnetic fields. The model also introduced a localized reduction in Ar and Ne neutral density to align with previous observations near the lunar pole.
A. Marino et al 2025 ApJL 980 L36
On 2024 May 27, the Wide-field X-ray Telescope on board the Space Sciences, University of Chinese Academy of Einstein Probe (EP) mission detected enhanced X-ray emission from a new transient source in the Small Magellanic Cloud during its commissioning phase. Prompt follow-up with the EP Follow-up X-ray Telescope, the Swift X-ray Telescope. and NICER have revealed a very soft, thermally emitting source (kT ~ 0.1 keV at the outburst peak) with an X-ray luminosity of L ~ 4 × 1038 erg s−1, labeled EP J005245.1−722843. This supersoft outburst faded very quickly in a week's time. Several emission lines and absorption edges were present in the X-ray spectrum, including deep nitrogen (0.67 keV) and oxygen (0.87 keV) absorption edges. The X-ray emission resembles the supersoft source phase of typical nova outbursts from an accreting white dwarf (WD) in a binary system, despite the X-ray source being historically associated with an O9-B0e massive star exhibiting a 17.55 day periodicity in the optical band. The discovery of this supersoft outburst suggests that EP J005245.1−722843 is a BeWD X-ray binary: an elusive evolutionary stage where two main-sequence massive stars have undergone a common envelope phase and experienced at least two episodes of mass transfer. In addition, the very short duration of the outburst and the presence of Ne features hint at a rather massive, i.e., close to the Chandrasekhar limit, Ne–O WD in the system.