Table of contents

Volume 14

Number 7, July 2014

Previous issue Next issue

E1

, and

Solar radiophysics is a rapidly developing branch of solar physics and plasma astrophysics. Solar radiophysics has the goal of analyzing observations of radio emissions from the Sun and understanding basic physical processes operating in quiet and active regions of the solar corona. In the near future, the commissioning of a new generation of solar radio observational facilities, which include the Chinese Spectral Radio Heliograph (CSRH) and the upgrade of the Siberian Solar Radio Telescope (SSRT), and the beginning of solar observations with the Atacama Large Millimeter/submillimeter Array (ALMA), is expected to bring us new breakthrough results of a transformative nature. The Marie-Curie International Research Staff Exchange (MC IRSES) "RadioSun" international network aims to create a solid foundation for the successful exploitation of upcoming solar radio observational facilities, as well as intensive use of the existing observational tools, advanced theoretical modeling of relevant physical processes and observables, and training a new generation of solar radio physicists. The RadioSun network links research teams from China, Czech Republic, Poland, Russia and the UK. This mini-volume presents research papers based on invited reviews and contributed talks at the 1st RadioSun workshop in China. These papers cover a broad range of research topics and include recent observational and theoretical advances in solar radiophysics, MHD seismology of the solar corona, physics of solar flares, generation of radio emission, numerical modeling of MHD and plasma physics processes, charged-particle acceleration and novel instrumentation.

753

This review summarizes new trends in studies of magnetic reconnection in solar flares. It is shown that plasmoids play a very important role in this primary flare process. Using the results of magnetohydrodynamic and particle-in-cell simulations, we describe how the plasmoids are formed, how they move and interact, and how a flare current sheet is fragmented into a cascade of plasmoids. Furthermore, it is shown that during the interactions of these plasmoids electrons are not only very efficiently accelerated and heated, but electromagnetic (radio) emission is also produced. We also describe possible mechanisms for the triggering of magnetic reconnection. The relevant X-ray and radio signatures of these processes (such as radio drifting pulsation structures, narrowband dm-spikes, and the loop-top and above-the-loop-top X-ray sources) are then described. It is shown that plasmoids can also be formed in kinked magnetic ropes. A mapping of X-points of the magnetic reconnection on the chromosphere (as e.g. a splitting of flare ribbons) is mentioned. Supporting EUV and white-light observations of plasmoids are added. The significance of all these processes for the fast magnetic reconnection and electron acceleration is outlined. Their role in fusion experiments is briefly mentioned.

773

and

Solar type III radio bursts are an important diagnostic tool in the understanding of solar accelerated electron beams. They are a signature of propagating beams of nonthermal electrons in the solar atmosphere and the solar system. Consequently, they provide information on electron acceleration and transport, and the conditions of the background ambient plasma they travel through. We review the observational properties of type III bursts with an emphasis on recent results and how each property can help identify attributes of electron beams and the ambient background plasma. We also review some of the theoretical aspects of type III radio bursts and cover a number of numerical efforts that simulate electron beam transport through the solar corona and the heliosphere.

805

Magnetohydrodynamic (MHD) processes are important for the transfer of energy over large scales in plasmas and so are essential to understanding most forms of dynamical activity in the solar atmosphere. The introduction of transverse structuring into models for the corona modifies the behavior of MHD waves through processes such as dispersion and mode coupling. Exploiting our understanding of MHD waves with the diagnostic tool of coronal seismology relies upon the development of sufficiently detailed models to account for all the features in observations. The development of realistic models appropriate for highly structured and dynamical plasmas is often beyond the domain of simple mathematical analysis and so numerical methods are employed. This paper reviews recent numerical results for seismology of the solar corona using MHD.

831

, and

The measurement of positions and sizes of radio sources in the observations of the fine structure of solar radio bursts is a determining factor for the selection of the radio emission mechanism. The identical parameters describing the radio sources for zebra structures (ZSs) and fiber bursts confirm there is a common mechanism for both structures. It is very important to measure the size of the source in the corona to determine if it is distributed along the height or if it is point-like. In both models of ZSs (the double plasma resonance (DPR) and the whistler model) the source must be distributed along the height, but by contrast to the stationary source in the DPR model, in the whistler model the source should be moving. Moreover, the direction of the space drift of the radio source must correlate with the frequency drift of stripes in the dynamic spectrum. Some models of ZSs require a local source, for example, the models based on the Bernstein modes, or on explosive instability. The selection of the radio emission mechanism for fast broadband pulsations with millisecond duration also depends on the parameters of their radio sources.

843

, , , , , and

A solar radio burst was observed in a coronal mass ejection/flare event by the Solar Broadband Radio Spectrometer at the Huairou Solar Observing Station on 2004 December 1. The data exhibited various patterns of plasma motions, suggestive of the interaction between sunward moving plasmoids and the flare loop system during the impulsive phase of the event. In addition to the radio data, the associated white-light, Hα, extreme ultraviolet light, and soft and hard X-rays were also studied.

855

, and

We aim to numerically study evolution of Alfvén waves that accompany short-lasting swirl events in a solar magnetic flux-tube that can be a simple model of a magnetic pore or a sunspot. With the use of the FLASH code we numerically solve three-dimensional ideal magnetohydrodynamic equations to simulate twists which are implemented at the top of the photosphere in magnetic field lines of the flux-tube. Our numerical results exhibit swirl events and Alfvén waves with associated clockwise and counterclockwise rotation of magnetic lines, with the largest values of vorticity at the bottom of the chromosphere, and a certain amount of energy flux.

864

, , and

Here we briefly present some design approaches for a multifrequency 96-antenna radioheliograph. The configuration of the array antenna, transmission lines and digital receivers is the main focus of this work. The radioheliograph is a T-shaped centrally condensed radiointerferometer operating in the frequency range 4–8 GHz. The justification for the choice of such a configuration is discussed. The signals from antennas are transmitted to a workroom by analog optical links. The dynamic range and phase errors of the microwave-over-optical signal are considered. The signals after downconverting are processed by digital receivers for delay tracking and fringe stopping. The required step of delay tracking and data rates are considered. Two 3-bit data streams (I and Q) are transmitted to a correlator with the transceivers embedded in Field Programmed Gate Array chips and with PCI Express cables.

869

and

On the basis of Poisson's equation for the logarithmic perturbation of matter density, we provide improved estimates of scale heights and spiral structures for non-edge-on spiral galaxies by subtracting the surface brightness distributions from observed images. As examples, the non-edge-on spiral galaxies PGC 24996, which is face-on, and M31, which is inclined, are studied. The scale height, pitch angle and inclination angle of M31, our nearest neighbor, that are presented in this work, agree well with previous research.

875

, , , , , , , , and

We select 947 star-forming galaxies from SDSS-DR7 with [O III]λ4363 emission lines detected at a signal-to-noise ratio larger than 5σ. Their electron temperatures and direct oxygen abundances are then determined. We compare the results from different methods. t2, the electron temperature in the low ionization region, estimated from t3, that in the high ionization region, is compared using three analysis relations between t2t3. These show obvious differences, which result in some different ionic oxygen abundances. The results of t3, t2, O++/H+ and O+/H+ derived by using methods from IRAF and literature are also compared. The ionic abundances O++/H+ are higher than O+/H+ for most cases. The different oxygen abundances derived from Te and the strong-line ratios show a clear discrepancy, which is more obvious following increasing stellar mass and strong-line ratio R23. The sample of galaxies from SDSS with detected [O III]λ4363 have lower metallicites and higher star formation rates, so they may not be typical representatives of the whole population of galaxies. Adopting data objects from Andrews & Martini, Liang et al. and Lee et al. data, we derive new relations of stellar mass and metallicity for star-forming galaxies in a much wider stellar mass range: from 106M to 1011M.

891

and

The attitude dynamics of a rigid artificial satellite subject to a gravity gradient and Lorentz torques in a circular orbit are considered. Lorentz torque is developed on the basis of the electrodynamic effects of the Lorentz force acting on the charged satellite's surface. We assume that the satellite is moving in a Low Earth Orbit in the geomagnetic field, which is considered to be a dipole. Our model of torque due to the Lorentz force is developed for an artificial satellite with a general shape, and the nonlinear differential equations of Euler are used to describe its attitude orientation. All equilibrium positions are determined and conditions for their existence are obtained. The numerical results show that the charge q and radius ρ0 of the center of charge for the satellite provide a certain type of semi-passive control for the attitude of the satellite. The technique for this kind of control would be to increase or decrease the electrostatic screening on the satellite. The results obtained confirm that the change in charge can affect the magnitude of the Lorentz torque, which can also affect control of the satellite. Moreover, the relationship between magnitude of the Lorentz torque and inclination of the orbit is investigated.