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Abstract. The utilization of measurement data is becoming attractive in various fields due to 
the massive growth of sensing and networking technologies. It is expected to utilize such a 
data-rich environment to improve engineering simulations in computer-aided engineering 
(CAE). Data assimilation is one of methodologies to statistically integrate a numerical model 
and measurement data, and it is expected to be a key technology to take advantage of measured 
data in CAE. However, the additional cost of data assimilation is not always affordable in CAE 
simulations. In this study, we consider the cost reduction of numerical flow simulation by the 
help of a reduced-order model. Since the prediction accuracy of existing ROMs are limited in 
transitional flow problems such as two- to three-dimensional flow transition, we investigate 
here a zonal hybrid approach of a full-order model and a reduced-order model. 

1. Introduction 
Computer-aided engineering (CAE) represented by numerical simulation play an indispensable role in 
modern research and development (R&D) processes. CAE realizes the reduction of design and 
development lead-time and enables design optimization for realizing better performance of products. 
Increase of computing power further improves the accuracy and ability of CAE, however, it also 
exposes the importance of the treatment of uncertainties contained in a CAE model, computational 
conditions and measurement data. On the other hand, downsizing and commoditization of sensors with 
the help of micro-electro-mechanical system (MEMS) technology are now making easy to gather 
measured data to a computing server. The movement of the internet of things (IoT) would make the 
collection of measurement data easier. One of the approaches to utilize measurement data for the 
improvement CAE simulation is the use of a data assimilation method. Modern data assimilation 
methods such as ensemble Kalman filter, particle filter and four-dimensional variational method 
demand several to several tens more computational resources than the original CAE simulation, 
therefore, there exists a wall that prevents the implementation of statistical methods such as data 
assimilation in the real-world R&D process. 

To alleviate the above-mentioned difficulty, two major approaches can be considered, i.e., the 
development of efficient data assimilation techniques or the cost reduction of the original simulation 
model. We consider here the latter approach, which is so-called reduced-order model (ROM) approach 
[1,2]. The reduced-order modelling would be considered as the interpolation of a state vector in time 
or in a parameter space, therefore, it is not possible to predict/extrapolate a field which is not included 
in a learning data set such as spatial bases. In fluid problems, proper orthogonal decomposition 
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(POD)-based ROM is often used, where a flow field is reconstructed by using the POD spatial bases. 
Fast and accurate prediction is possible especially in the case of periodic flows if the pre-constructed 
spatial bases are appropriate. However, it is difficult to represent a transitional field without having 
appropriate bases before/after the transition. To overcome this, a hybrid approach, where a full-order 
model (FOM) and a ROM are switched to track the transition of a state, was proposed in a relatively 
simple problem [3]. In their research, FOM and ROM are switched in time for a whole domain. In the 
case of a complex flow field, the modelling fidelity can be switch in space using the framework of 
multi-block computational infrastructure [4]. 

In this study, we consider a simple flow around a square cylinder, where the flow field can be two- 
or three-dimensional depending on a Reynolds number. More specifically, the flow field changes from 
two-dimensional vortex shedding to three-dimensional complex vortical structure by increasing 
Reynolds number from approximately 100 to 1000. There also exists a major transition phenomenon 
in fluid dynamics called laminar to turbulent transition, which goes well beyond the scope of this 
research. First, a zonal ROM is considered. The accuracy of a ROM is then assessed by evaluating the 
error of full-order Navier-Stokes and the ROM predictions in the wake of the square cylinder.  

2. Numerical methods 
In this section, we briefly explain computational fluid dynamics simulation of a flow around a square 
cylinder. It is also discussed about the POD and a ROM using POD bases. 

2.1. Computation flow simulation 
For flow simulation, we employ the incompressible Navier-Stokes equations: 
 

 
𝜕𝑢#
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= −
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𝜕𝑆#&
𝜕𝑥&

, (1) 

   

 
𝜕𝑢#
𝜕𝑥#

= 0, (2) 

 
where 𝑢#  and 𝑝- represent the velocity components in three spatial directions (𝑗, 𝑘 = 1, 2, or 3), the 
pressure deviation from the reference state 𝑝 = 𝑝5 + 𝑝-, respectively. 𝑆#& = 6𝜕𝑢#/𝜕𝑥& + 𝜕𝑢&/𝜕𝑥#8/2 
denotes a strain rate tensor. The summation convention is used for the velocity components	𝑢# . 𝜌 and 
	𝜈 denote density and kinematic viscosity, respectively. Equation (1) can be normalized by introducing 
the Reynolds number:	Re = 𝑈𝐿/𝜈, which represents the ratio of inertial and viscous effects in a flow 
field and governs the flow structure including the onset of flow transition. 

A computational domain is composed of a parallelepiped domain with a square cylinder of unit 
sides inside as in figure 1. The longitudinal length of the square cylinder is set to two and periodic 
boundary condition is employed in the longitudinal direction. A uniform flow is specified in the inlet 
boundary (the left boundary in figure 1) and the convection boundary condition is used on the outlet 
boundary (the right boundary). The Neumann boundary condition is applied to the top and bottom 
boundaries in figure 1. The wall boundary of the square cylinder is represented by specifying the 
opposite velocity vector inside the wall, which realizes the non-slip boundary condition on the wall 
with the linear velocity distribution near the wall.  

Figure 2 shows flow fields with the Reynolds number of 100 and 1000, where the flow field has 
two-dimensional structure in the former case and the flow field shows three-dimensional structure 
with small disturbances in crossflow direction in the latter. This is one of flow transition phenomena 
occurs in a small Reynolds number regime. There is also an important flow transition phenomenon 
which is taken place in relatively high Reynolds numbers: Re = 2.5x105 for a flow around a sphere. 
This type of flow transition is often due to the laminar-turbulent transition and it plays important roles 
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in many industrial applications. It is because skin friction and heat transfer on the wall becomes 
several times larger in a turbulent boundary layer than those of a laminar boundary layer.  

 
Figure 1. Computational domain and the region of interest for 
reduced-order modelling. 

 

  
Figure 2. Flow fields obtained by Navier-Stokes equations for Reynolds numbers of 
(a) Re = 100 and (b) Re = 1000 visualized by a streamwise velocity. 

2.2. Proper orthogonal decomposition (POD) 
The proper orthogonal decomposition (POD) is a methodology similar to the principal component 
analysis [5]. The POD decomposes a flow field based on the variance of deviation, that is, 
 
 arg	min

𝝋
E𝑋 − 𝝋𝝋𝑻𝑋E,	 (3) 

 
where 𝑋 contains a certain data set and 𝝋 is a POD basis vector. In the case of a flow simulation data 
set, the matrix 𝑋 tends to be very large, therefore, a snapshot-based approach is employed. During an 
unsteady flow simulation, a flow field is extracted every several time steps as a snapshot. The matrix 
𝑋 is composed as, 
 

 𝑋 = H
𝑢II ⋯ 𝑢IK

⋮ ⋮
𝑢MI ⋯ 𝑢MK

N, (4) 

 
where a superscript 𝑚 indicates the number of snapshots and 𝑛 is the number of variables (number of 
grid points multiplied by the number of variables) in the case of flow simulation. The minimization in 
equation (3) results in an eigenvalue problem in equation (5). 

(a) (b) 
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 𝑋Q𝑋𝝋R = 𝜆R𝝋R,	 (5) 
 
Using 𝑚 snapshots of a flow field, we have 𝑚 eigenvalues 𝜆R	and eigenvectors	𝝋R. The POD basis 
vector which has the same size as the original field variable is defined as, 
 
 𝜳R = 𝑋𝝋R/U𝜆R.	 (6) 
 
This POD basis vector can be used to construct the reduced-order model as described in the following 
section. Using the basis vectors, the original velocity field can be reproduced by, 
 

 𝒖(𝑥, 𝑡) = 𝒖Z(𝑥) +[𝑎R(𝑡)𝜳R(𝑥)
]

R^I

.	 (7) 

 
where 𝒖Z(𝑥) is the average field subtracted from the matrix 𝑋 before composing the matrix 𝑋Q𝑋 and 𝑟 
denotes the number of POD modes used for reconstructing the flow field. The temporal coefficients 
𝑎R(𝑡) can be obtained from the original snapshots by the inner-product of the velocity vector and the 
POD basis vector as, 
 
 𝑎R(𝑡) = (𝒖(𝑥, 𝑡) − 𝒖Z(𝑥)) ∙ 𝜳R(𝑥).	 (8) 
 
The temporal coefficients obtained from the original snapshots are used to construct surrogate-based 
reduced-order models as described in the following section. 

2.3. Reduced-order model (ROM)  
A well-known approach to construct a reduced-order model from an unsteady flow field is the 
Galerkin projection method. The inner product of the POD bases and governing equations is 
calculated to generate a set of ordinary equations, which can be in the form of, 
 

 𝑑𝑎R
𝑑𝑡

= 𝑓(𝑎I, 𝑎c,⋯ , 𝑎]).	 (9) 

 
Due to the orthogonality of POD bases, the derived ordinary equations are easy to solve and the 
number of equations corresponds to that of POD bases considered. Using the obtained time-varying 
coefficients	𝑎R, a velocity field is reproduced by equation (7). The Galerkin projection approach is 
attractive since the mathematical background is well established, however, there exist several 
drawbacks such as a computational cost for calculating inner products, a stability problem for high 
Reynolds number flows. One alternative would be the use of surrogate models for the time 
development of the time coefficients. A radial basis function (RBF) is one of such surrogate models to 
develop the temporal coefficients in time [6], i.e., the temporal coefficients of POD mode 𝑖 can be 
represented as a linear combination of 𝑟 radial basis functions 𝜙,  
 

 𝑎RM = 𝑓R6𝑎RMfI8 =[𝑤R,# ∙ 𝜙6𝑟#8
]

#^I

.	 (10) 

 
where 𝑤R,# are weight coefficients and  𝑟# is a distance 𝑟# = E𝑎RMfI − 𝑎hR

#E from a set of data points 𝑎hR
# 

calculated from the snapshots by equation (8). The temporal coefficient of mode 𝑖 at time level 𝑛 − 1, 
𝑎RMfI is advanced to that at time 𝑛 with equation (10). In this study, we adopted a multi-quadratic 
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function is employed: 𝜙6𝑟#8 = i𝑟#c + 𝑟5c, where 𝑟5 is a parameter which can be determined, for 

example, by the leave-one-out cross-validation. Ensuring that the interpolated value matches the given 
𝑟 + 1 data points from the snapshots, equation (10) can be rewritten in the matrix form as, 
 
 𝐴R𝒘R = 𝒚R,	 (11) 
 
where  
 

 𝐴R = Hm
𝜙6E𝑎RI − 𝑎hRIE8 ⋯ 𝜙6E𝑎RI − 𝑎hR]E8

⋮ ⋱ ⋮
𝜙6E𝑎R] − 𝑎hRIE8 ⋯ 𝜙(‖𝑎R] − 𝑎hR]‖)

pN	 (12) 

 
 𝒘R = q𝑤R,I, 𝑤R,c,⋯ ,𝑤R,]r

Q
,	 (13) 

 
 𝒚R = [𝑎RI, 𝑎Rc,⋯ , 𝑎R]]Q,	 (14) 
 
Equation (11) is solved by a matrix solver using the singular value decomposition (SVD). The 
resulting weights 𝑤R,#	determine the equations for temporal coefficients. 

3. Zonal mode analyses 
In this section, we compare POD bases by changing a domain of the decomposition. Figure 3 shows 
the first POD mode for a flow field with Re = 100, where a Karman vortex street is formed behind a 
square cylinder. Using the same flow field, the POD analysis is conducted in the whole domain as 
shown in figure 3(a), a top-half domain in (b), a downstream half domain in (c), and the one-fourth 
domain in (d). Since each POD basis is normalized so that the magnitude of a POD basis is equal to 
one, a time coefficient is multiplied to a corresponding POD basis for comparison in those figures. The 
result shows that the distributions appear similarly, and the magnitude is slightly different in figures 
3(c) and (d). The difference may come from the accuracy of the matrix computation related equation 
(5). The phase and period of the vortices are very similar for all the cases. This tendency was 
confirmed for other POD bases, however, the difference related to the accuracy of the matrix 
computation becomes more noticeable in high frequency (low energy) POD modes.  

  

  

(a) (b) 

(c) (d) 
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Figure 3. A POD mode obtained by limited domains, (a) whole domain, (b) top-half 
domain, (c) downstream half domain, and (d) one-fourth domain. 

4. Zonal hybrid flow prediction 
In this section, we conduct a zonal hybrid flow prediction, where a downstream part of the domain is 
predicted by the POD-RBF-ROM and the upstream part is simulated by the full-order Navier-Stokes 
equations (FOM, hereafter). The error of the hybrid flow prediction is evaluated by root mean square 
error (RMSE) and by visualized flow fields. To simplify the evaluation of the hybrid approach, we 
update the flow field in an offline manner, i.e., we prepare a set of snapshots by the FOM simulation. 
The evolution of the flow field is then represented simply by switching the snapshots. The POD-RBF-
ROM prediction replaces the downstream half domain of the snapshot and RMSE is evaluated.  

4.1. Two-dimensional flow field for Re = 100 
We here evaluate the RMSE of the velocity field between full-order Navier-Stokes prediction and the 
POD-RBF-ROM prediction in the downstream half of the domain. Figure 4 shows the RMSE for cases 
with different values of POD energies, EROM = 99.99, 99.0 and 95.0%. In addition, the RMSE evaluated 
on the boundary between an upstream FOM domain and a downstream ROM domain. The error on the 
domain boundaries can be utilized in actual applications where the FOM results is not available in the 
ROM domain. The results show that the RMSE decreases as the POD energy increases, which 
corresponds to the more number of ROM equations. The RMSE on the boundary has similar 
magnitude as the RMSE of the downstream half domain, therefore, it can be used to evaluate the error 
of the ROM prediction by the comparison of FOM and ROM results on the boundary. 

Figure 5 shows the streamwise velocity distribution for three different POD energy thresholds, (a) 
EROM = 99.99%, (b) EROM = 99.0%, and (c) EROM = 95.0%. The distribution is smoothly connected in the 
case of EROM = 99.99%, while discontinuity of the distribution is seen in EROM = 95.0%. Small distortion 
of the contour lines can be observed in the case of EROM = 99.0%. The number of POD bases (ROM 
equation) are 11, 6 and 3 for the cases of EROM = 99.99, 99.0 and 95%, respectively. For the POD, 40 
snapshots are used as input. 

 
Figure 4. Error of a reconstructed flow field for different energy thresholds for Re = 100. 
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Figure 5. A reconstructed flow field for different energy thresholds, (a) EROM = 99.99%, (b) 
EROM = 99.0%, and (c) EROM =95.0%. 

4.2. Three-dimensional flow field for Re = 1000 
Figure 6 shows the same plot as figure 4, but for the cases with Re = 1000. Again, we consider cases 
of EROM = 99.99, 99.0 and 95.0%. The RMSE exhibits larger values compared to the cases of Re = 100, 
which indicates that the accuracy of the ROM prediction is degraded regardless of the same energy 
thresholds. The number of POD bases used here are 78, 34 and 18 modes for EROM = 99.99, 99.0 and 
95.0%, respectively, which is much larger than the cases of Re = 100. Even so, the accuracy of the 
ROM prediction is not satisfactory to zonally replace the FOM prediction by the ROM. For the POD, 
100 snapshots are considered as input. 

Figure 7 shows the streamwise velocity distributions for (a) the FOM prediction, and (b) the ROM 
prediction with EROM = 99.99%. The ROM reproduced flow field is significantly different from the FOM 
results. This is because the time history of temporal coefficients predicted by equation (10) becomes 
slightly complex for Re = 1000 as shown in figure 8. In the case of Re = 100, the temporal coefficients 
varies sinusoidally and it is accurately predicted by the POD-RBF-ROM. On the other hand, the 
sinusoidal variation of the temporal coefficients is distorted in the case of Re = 1000, and this causes 
the difficulty in predicting using the POD-RBF-ROM. It is known that the projection-based ROM is 
often unstable [1]. The possibility to overcome this difficulty is to improve ROM or to use the other 
spatial basis which realizes the sinusoidal variation of temporal coefficients. The dynamic mode 
decomposition (DMD) would be used to improve the ROM prediction [7]. 

(a) (b) 

(c) 
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Figure 6. Error of a reconstructed flow field for different energy thresholds for Re = 1000. 

 

 
Figure 7. (a) A reconstructed flow field for the energy threshold of EROM = 99.99%, and (b) a 
flow field obtained by a full-order Navier-Stokes equations. 

 

   
Figure 8. Temporal coefficients of first and second modes for (a) Re =100, and (b) Re =1000 

5. Conclusions  
In this study, we considered a simple flow field around a square cylinder, where the flow field can be 
two- or three-dimensional depending Reynolds numbers. First, we showed that the POD analysis can 
be applied to an arbitrary sub-domain of the flow field. The accuracy of the POD-RBF-ROM was then 
assessed by evaluating the RMSE of full-order Navier-Stokes and the POD-RBF-ROM predictions in 
the wake of the square cylinder. The accuracy of the POD-RBF-ROM for Re = 1000 was much 
degraded compared to the case with Re = 100, because the prediction of temporal coefficients became 
difficult by increasing Reynolds number. In the future work, we investigate the possibility of zonal 
model switching to reduce the cost of numerical simulation while retaining the accuracy. 

(a) (b) 

(a) (b) 
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