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Abstract. Modern wind turbines have access to highly reliable measurements of important 

control input signals, such as generator speed and nacelle acceleration. They also have high 

fidelity numerical models such as in Bladed, which can be used to estimate structural loads 

under simulated normal and extreme operating conditions. However, if we want to know the 

structural loads that occurred in a time period on the real turbine, presently this requires 

instrumentation with strain gauges. These sensors can be unreliable and expensive to install, 

calibrate and maintain. The price of reliable sensors is unlikely to drop to an affordable level 

for onshore wind in the near future. This paper describes a method of fusing the control input 

signals with the turbine numerical model to estimate structural loads online in real time. The 

estimator is validated in Bladed simulations of a Goldwind 6 MW turbine. 

1. Introduction 

In today’s wind industry, companies are looking intensively at innovations that will drive turbine 

performance and operational efficiency, while effectively managing operational risk and safety. A 

challenge in the industry is how to join the dots of numerical models of the wind turbine and real 

operational data to offer original equipment manufacturers (OEMs) and asset owner/operators (OOs) 

insights that help to drive down levelised cost of energy (LCoE). 

 DNV GL has addressed this challenge by introducing the digital twin solution for wind asset 

management, where numerical models of the wind turbine are combined with real data to offer smart 

monitoring of the asset performance in terms of energy and loading. The framework allows the OOs to 

gain confidence in the whole asset lifecycle, and schedule maintenance efficiently. Key information 

for OEMs is extracted to improve the design and the manufacturing process. 

 Load estimation is one component in the DNV GL digital twin framework. The load estimator 

maintains a numerical model of the turbine’s structural states, and fuses this information with 

measurements from reliable sensors that are already in use within the turbine controller. This provides 

more detailed insights into the turbine behaviour without the need for additional sensors. The 

estimated load signal can be used directly for estimation of turbine fatigue accumulation. Furthermore, 

it can be fed back to the controller to design a load based controller to allow the wind turbine to better 

react to the change of external conditions. A fleet leader approach will be used to validate the load 

estimates, saving the installation of load sensors on the others turbines. 

 This paper explains the development and validation of a structural load estimation algorithm for a 

Goldwind 6.x MW turbine. A numerical model of the turbine is created in the aeroelastic simulation 

software Bladed. The relationship between the control input signals and the structural loads is 

parameterised using machine learning offline, exploiting the realism of the Bladed model. The 

parameters are embedded into the turbine controller for online real time load estimation. The initial 

http://creativecommons.org/licenses/by/3.0
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version of the load estimator presented here requires generator speed and torque, pitch angle and 

nacelle acceleration signals, and estimates structural loading at the stationary hub and the tower base. 

The algorithm can be easily extended and customised. 

 The load estimator is a linear parameter varying model of the turbine structure and aerodynamics. 

Each linearisation is valid in its own wind speed range, with several linearisations covering the 

operating range for the turbine. As the wind speed shifts, due to low frequency energy in the 

turbulence, the linear parameters adapt via interpolation between neighbouring models at run time. 

Figure 1 gives a process overview of the load estimator. 

 

Figure 1: Schematic diagram of the load estimator at run time 

 This paper is organised as follows. Section 2 describes the technique to estimate loads assuming a 

locally linear model of the turbine. Section 3 describes how multiple linear models are combined to 

facilitate the operation of the load estimator across a wide range of wind speeds. Section 4 shows the 

results of one numerical simulation for illustration. Section 5 is a sensitivity study, giving firm 

quantification of the performance of the load estimator when applied to fatigue estimation. Finally, 

Section 6 makes some concluding remarks and suggests useful future work. 

2. Linear estimation 

The real-time load estimator in this paper is focussed on structural loads. Drivetrain, pitch actuator and 

other loads will be considered as part of future work. Numerical models of large wind turbines can 

have highly complex structural representations, with many structural modes. However, typically only 

a small number of these modes are required to capture the majority of the energy present in the full 

model during normal operation. 

 The inputs to the estimator (generator speed, generator torque and nacelle acceleration) were 

chosen because they are affected by the dominant structural modes, and thereby observe vibrations in 

those modes. This observation is crucial to the operation of the load estimator and is why estimators 

are also known as observers. An overview of the application of observers to wind turbine dynamic 

state estimation can be found in [1]. In this light, the present work can be seen as a simplification of an 

EKF, but with substantially lower costs to implement. 

 This section describes how the estimator processes its inputs, with the initial assumption that the 

structure can be described by a linear, observable system. The next section will extend the capability 

of the estimator to cope with nonlinearities. 

 The challenge with the linear estimator is to find a dynamic system to map from the inputs to the 

outputs, where by outputs we mean the loads to be estimated. The process of finding this system, or at 

least the parameterisation of the system, is called training. This training stage requires time series of 

inputs and true outputs, and initially these are created in simulation. Future work will repeat the 

training stage with measured data from the real turbine. The goal of the training stage is to minimise 

the sum of square errors between the estimator outputs and the true outputs. 
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 The simplest possible linear dynamic system that could be used to map inputs to outputs for this 

purpose would be a matrix multiplication. A weight is given to each input-output pair, and the 

weighted inputs are summed. Optimal weights for such a system can be found by regression. 

Typically, the outputs will be better represented by an affine map than a linear map, so an extra input 

is introduced, which is simply a constant value of one. The weight matrix thereby has an extra column 

to allow the offset to be modelled. Stating the above system mathematically, 

 𝒚̂ = Ψ𝒙 (1) 

where  𝒚̂ is a vector of estimated outputs at a given time step, 𝒙 is a vector of the inputs at the same 

time step, and Ψ is the weight matrix to be found. Let us define the true loads to be estimated as 𝒚, for 

one time step, congruent to  𝒚̂. For training, the same model is to be used for all time steps, so this 

equation can be made more general by stacking subsequent inputs and outputs transposed into tall 

matrices, where each row is one time step. Let  𝑌̂ be the estimated outputs 𝒚̂𝑻 stacked, and similarly 

for 𝑋 and 𝑌 so that  𝑌̂ = 𝑋Ψ𝑇. Note the entire first column of 𝑋 is unity. We now wish to find the 

value of Ψ that minimises the cost, which is the sum of squares of  𝑌̂ − 𝑌. This can be written as 

follows: 

 Ψ = argmin
Ψ

(𝑌̂ − 𝑌)
𝑇

(𝑌̂ − 𝑌). (2) 

 Expanding, differentiating and rearranging, we find the ordinary least squares result that 

 ΨT = (𝑋𝑇𝑋)−1𝑋𝑇𝑌. (3) 

We can now discuss how well the dynamic model suits the purpose of estimating loads. If an input-

output pair are in phase, the weight will be positive. If they are 180° out of phase, the weight will be 

negative. But in general, the inputs and outputs will be related by some arbitrary phase and gain. Since 

phase lead is not possible at run time, phase lag is required. The amount of lag required is not known 

in the training, so several candidate lags are added to the input matrix by concatenating new columns 

in 𝑋. If these columns can be removed without significantly increasing the cost in the optimisation 

above, they are permanently removed. 

 The lagged columns of 𝑋 are created by filtering relevant existing columns of 𝑋. This keeps the 

overall system linear, adds only a small number of new weights to optimise, is trivial to run online, 

and provides some signal noise rejection. The filters are chosen from a set of available filter types in 

the control algorithm, tuned using engineering judgement but in principle could be optimised 

numerically. Additional filters can increase the accuracy of the load estimation, but accuracy cannot be 

made arbitrarily high, because some structural modes may not be observable with the limited set of 

measurements used in the estimator. 

3. Real time interpolation 

Variable speed pitch regulated wind turbines have a wide range of dynamics depending on mean wind 

speed. Turbine control algorithm designers deal with this by configuring a suite of nonlinear 

compensators that operate above their respective linear feedback laws. For example, between rated 

generator speed and rated wind speed, the generator speed is often regulated with a PI controller on 

torque. The PI gains are chosen to optimise performance for a linear system, linearised from the full 

aeroelastic model under the conditions that the torque-speed controller is operating. Other 

linearisations are required for the pitch-speed loop. These linearisations combined form a linear 

parameter varying system, or LPV [2]. 

 The situation is similar for load estimation, in that the optimal weight matrix found from training 

data at mean wind speed 𝑣1 will generate load estimates when operating at mean wind speed 𝑣2 that 

diminish in accuracy as |𝑣1 − 𝑣2| increases. The solution given in the present work is to train a ‘bank’ 

of weight matrices, each trained at a distinct mean wind speed, and interpolate the weight matrices 

when running the estimator online. Since the estimator states are determined by the filters, which are 

stable, the estimator states are stable. Since the estimated loads are weighted sums of the estimator 

states, these are also stable, regardless of interpolation. 
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 As with gain scheduling in the pitch-speed loop, e.g. [3], the anemometer signal is not reliable for 

scheduling. Above rated wind speed, the pitch angle is a more reliable proxy for the wind conditions, 

and below rated, the generator torque is appropriate. We actually want one scheduling variable, not 

two, so a weighted sum of pitch angle and generator torque is used in this work, since this is 

monotonically increasing in steady state. From the training data at mean wind speed 𝑣𝑖, the optimal 

weight matrix Ψ𝑖 is calculated, and the operating point 𝜆𝑖 is found by weighted sum of the mean pitch 

angle and mean torque. 

 Now in run time, for each time step, 𝑡, the weight matrix Ψ(𝑡) is calculated by linear interpolation 

as follows: 

 Ψ(t) = (1 − 𝛼(𝑡))Ψ𝑖 +  𝛼(𝑡)Ψ𝑖+1 (4) 

where 

 
𝛼(𝑡) =

𝜆(𝑡) − 𝜆𝑖

𝜆𝑖+1 − 𝜆𝑖
 

(5) 

and where 𝜆𝑖 < 𝜆(𝑡) ≤ 𝜆𝑖+1. Special conditions are put on 𝛼(𝑡) for cases where 𝜆(𝑡) is outside 

bounds of the bank of weight matrices. 

4. Numerical examples 

The following numerical examples were performed on the Goldwind 6MW Bladed model. Values 

have been omitted from the axes to protect proprietary information on the turbine design. Figure 2 

gives an overview of the numerical model, showing inputs and outputs of the load estimator. 

 

Figure 2: An overview of the wind turbine model 

used in this work. Inputs to the load estimator, 

known at run time, are 𝛽 pitch angle, 𝑎𝐹 , 𝑎𝑆 fore-

aft and side-side nacelle acceleration, and 𝑄, Ω 

generator torque and speed. Outputs, to be 

estimated at run time, are 𝐹𝑥 , 𝑀𝑥 stationary hub 

thrust and in-plane moment, and 𝑀𝑥0, 𝑀𝑦0 tower 

base fore-aft and side-side bending moments. 

 

 The time series data used in this validation exercise consists of Bladed output data from 60 power 

production simulations, each of duration 600 seconds. The wind fields applied in these simulations are 

six random turbulence seeds at each of ten mean wind speeds from 4 m/s to 22 m/s. For each mean 

wind speed, one simulation is used for training the local linear estimator and finding the operating 

point. The other five are used for testing the performance of the nonlinear estimator. The test 

procedure will be described later in this paper. The ten training simulations give the operating points 

shown in Figure 3 and the ten weight matrices Ψ1 to Ψ10. 

𝐹𝑥 

𝑀𝑥 

𝛽 
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𝑎𝑆 
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Figure 3: Operating points 𝜆1 to 𝜆10 

corresponding to each mean wind speed 

in the training data. Online, this table is 

used for interpolation. 

 To briefly illustrate of the performance of the load estimator, the results from a simulation at mean 

wind speed of 12 m/s are shown. This mean wind speed was selected to demonstrate the ability of the 

load estimator to cope with rapidly changing dynamics as the wind conditions vary between above 

rated and below rated. 

 

Figure 4: Operating point index as it varies over a 600 second simulation at mean wind speed 12 m/s. 

 

 Figure 4 shows which weight matrices are used during the run. For example, at time step 300, the 

weight matrix in use is a linear combination of Ψ4 and Ψ5. The graph shows how much the load 

estimator uses the multiple linearisations to handle turbulence. Operating point values on the vertical 

axis are replaced with the respective operating point indices. 

 Figures 5-8 show the accuracy of the load estimator in the same simulation. Note, the load 

estimator only has access to the input signals of the controller as it would be on a real turbine. The 

measured signals are taken from the Bladed results file for comparison and evaluation only. 
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Figure 5: Measured and estimated tower base fore-aft bending moment for the example simulation. 

 

Figure 6: Measured and estimated tower base side-side bending moment for the example simulation. 

The results are zoomed in time to show detail and the time axis labels removed to protect design 

details because this load component is dominated by rotor speed. 
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Figure 7: Measured and estimated stationary hub Fx (thrust force) for the example simulation. 

 

Figure 8: Measured and estimated stationary hub Mx (torque) for the example simulation. Note the 

accurate response of the load estimator during transients such as around 160 seconds. 

 

 The time series above are given to illustrate the performance of the load estimator. They are 

representative of the performance across the full operating range. Figure 9 shows the same results in 

the frequency domain. The next section gives a detailed analysis of the accuracy of the estimator in 

terms of damage equivalent loads (DELs) over the full wind speed range. 

 Small differences between estimated and true loads are generally due to turbine dynamics of higher 

orders than within the estimator such as higher structural modes. Therefore, the estimator slightly 

underestimates the fatigue. However, by testing the estimator in a wide range of wind conditions, as is 

done in the following section, it is seen that the amount each load component is underestimated by is 

consistent and predictable. It is therefore justified to use the validation of the load estimator to 

determine a correction factor to be applied to the DELs. This factor is constant once determined and is 

chosen so as to minimise the square error between estimated and true DELs across the full validation 

set of wind conditions. The correction is not part of the load estimator – rather, it is applied after 

rainflow counting and can be considered a basic form of damage estimator. 
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Figure 9: Measured (blue) and estimated (red) four load components, for the same simulation as 

illustrated in Figures 5-8, shown in the frequency domain. Axis numbers have been removed to protect 

intelectual property. 

5. Sensitivity study 

Each operating point is trained on a small set of time series and tested on a full set of IEC [4] power 

production simulations. This validation gives high confidence that the load estimator is accurate and 

not over-tuned. Since a potential use for the load estimates is for fatigue estimation, the estimated 

loads are rainflow counted and converted into DELs. As described in Section 4, each load component 

has a scaling factor for its DELs to remove predictable underestimation in DELs from higher order 

dynamics. Our measure of accuracy for DELs is the coefficient of determination of the estimated 

DELs (𝐷𝑒) against the true DELs (𝐷𝑡). Coefficient of determination is defined as: 

 
𝑅2 = 1 −

Var(𝐷𝑒 − 𝐷𝑡)

Var(𝐷𝑡)
 

(6) 

where Var is variance. Coefficient of determination is appropriate because it represents the proportion 

of true variation in the variables that is captured, or explained, by the estimates. 

 Figure 10 shows estimated and true DELs for tower base fore-aft moment for the normal 

turbulence cases. This was the set of load cases for which the scaling factor for DELs was chosen. The 

value of 99.31% means that the variance in fatigue estimation across normal turbulence simulations is 

0.7%. 

Tower base fore-aft Tower base side-side

Stationary hub Fx Stationary hub Mx
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Figure 10: Tower fore-aft damage equivalent 

loads (normalised) from 60 simulations across 

ten wind speeds from 4 m/s to 22 m/s under 

normal turbulence conditions, from the load 

estimator against the true values. Coefficient 

of determination R2 = 99.31%. 

 Table 1 gives the coefficients of determination for the all four load components for nine different 

wind conditions. The load estimator was not re-trained for these conditions, nor was the scaling 

adjusted for estimated DELs. Rather, the numbers represent the accuracy of the fatigue estimation 

under conditions that do not match the conditions under which the estimator was trained. They show 

that the estimator is insensitive to wind conditions. 

 Tower base side-side fatigue stands out as slightly less accurate than other load components in this 

study, but note that side-side moments at the tower base contribute significantly less than the fore-aft 

moments to overall tower base fatigue. 

 

Table 1. Coefficients of determination for 60 simulations in each of nine wind conditions 

Wind conditions Tower 

fore-aft 

Tower 

side-side 

Stationary 

hub Fx 

Stationary 

hub Mx 

High turbulence 98.89 96.43 98.10 99.44 

Normal turbulence 99.31 98.26 99.52 99.69 

Low turbulence 99.11 97.89 99.36 99.74 

8 degrees of flow inclination 98.99 98.44 99.46 99.71 

16 degrees of flow inclination 99.06 98.56 99.37 99.71 

-10 degrees of nacelle heading 99.04 98.21 99.33 99.67 

+10 degrees of nacelle heading 99.02 98.04 99.34 99.70 

0.07 wind shear 99.02 98.56 99.48 99.69 

0.28 wind sheer 98.95 98.17 99.37 99.67 

6. Conclusions 

Reliable measurements that are already available to the wind turbine control system are used to 

estimate loads for which sensors are typically expensive or unreliable over the lifetime of the turbine. 

The estimation algorithm consists of a bank of linear estimators, receiving the raw measurements 

combined with carefully designed filtered channels. The output of the estimator is a weighted sum of 

the inputs, where the weights are chosen by linear interpolation over the operating range. Each 

estimator is trained offline, using simulation time series or measurements if available. 
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 A numerical example is given of the load estimator running in wind conditions where the mean 

wind speed moves above and below rated wind speed, due to low frequency energy in normal 

turbulence. Furthermore, the results of many such simulations are combined to find the optimal 

damage equivalent fatigue estimation parameters. Coefficients of determination give an indication of 

the extent to which the fatigue is correctly estimated. A sensitivity study is performed with the trained 

parameters fixed and the wind conditions varied, totalling 540 simulations, each of 600 seconds. 

 The results of the sensitivity study show that under the conditions in which the turbine is designed, 

most load components have estimated DELs with less than 1% error. Furthermore, even under unusual 

or unexpected wind conditions, the estimated DELs did not exceed 2.5% error, except in turbulence 

that would be too severe for the turbine to operate continuously. 

 Future work will perform field validation against carefully calibrated load sensors on a fleet leader 

turbine, representative of its type and site conditions. The history of fatigue estimates over a long 

period of operation for each turbine in a fleet forms a digital twin system, with potentially vast impacts 

on turbine remaining life estimation, effectiveness of both wind turbine and wind farm controllers, 

scheduled maintenance and investment insights. 
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