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Abstract. We perform the Hamiltonian formulation of the Einstein-aether theory subject to
the condition of hypersurface-orthogonality on the aether vector. Our main aim is to obtain the
bulk Hamiltonian together with its constraints and their algebra. We implement a perturbative
approach, studying the theory at the linearized level. Under the condition of hypersurface
orthogonality the aether vector can be represented by a scalar field. The theory has two first-
class constraints, which are associated to the symmetry of general diffeomorphisms over the
spacetime. One of the constraints depends on the perturbative aether field, generating linear-
order diffeomorphisms on it. We also present the reduced bulk Hamiltonian depending on
the physical degrees of freedom. We find conditions on the coupling constants enusring the
positiveness of the reduced Hamiltonian and the hyperbolicity of the propagation equations of
the independent modes.

1. Introduction
There is a great interest in studying theories that break the Lorentz symmetry, either by quantum
motivations or even at the classical level with theories that are modifications of general relativity
(GR). One of such classical theories is the Einstein-aether theory (EA-theory) [1]. In esence,
this theory modifies GR by coupling to it a dynamical vector field uµ, called the aether, which
is regarded as a fundamental field rather than a matter source. The dynamical aether vector
is restricted to be timelike and unitary, uαuα = −1. On any configuration, the presence of
the vector uµ breaks the local Lorentz symmetry. On the other hand, since the vector uµ is
dynamical and the action is fully written in term of spacetime tensors, the action is manifestly
invariant under general diffeomorphisms on the spacetime. The action of the standard theory,
which is the one we study here, is of second order in derivatives of uµ, although higher order
couplings can be considered as well.

In the general case there are three independent propagating modes associated to the aether
vector. This number can be reduced by imposing the geometrical condition of hypersurface
orthogonality on the aether vector uµ. Locally this condition can be defined by means of
a function T whose gradient is everywhere timelike, ∂µT∂

µT < 0. Then the condition of
hypersurface orthogonality is

uα =
∂αT

(−gµν∂µT∂νT )
1/2

. (1)
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With this condition the normalization constraint on the aether field is satisfied. We call the
theory with this condition the restricted EA-theory (other used names are the khronometric
theory and the T theory). Intrerestingly, the Lagrangian of the restricted EA-theory is related
[2, 3] to the Lagrangian of the nonprojectable Hořava theory [4, 5] truncated up to second order
in spatial derivatives.

Regardless of the condition of hypersurface orthogonality, the full Hamiltonian formulation
of the EA-theory has not been successfully achieved due to the mathematical complications
that arise in the Legendre transformation (boundary terms that determine the energy and
other conserved charges for asymptotically flat configurations have been previously studied in
Refs. [6, 7]).

In this paper we give an answer to the problem of finding the bulk Hamiltonian of the Einstein-
aether theory. Specifically, by means of a perturbative analysis we obtain the bulk Hamiltonian
of the linearized restricted EA-theory with its corresponding constraints. This analysis allows
us to determine rigorously the dynamics of the true propagating modes of the theory. We also
study the relation of the constraints with symmetries.

2. Lagrangian and Hamiltonian formulations
2.1. The perturbative Lagrangian
The action of the (unrestricted) EA-theory, omiting a cosmological-constant term and matter
couplings, is [1]:

Sae =

∫ √
−g (R+ Lae) d

4x. (2)

In this action R is the four-dimensional Ricci scalar and Lae the Lagrangian density of the aether
vector, which is given by

Lae = −Mαβλγ∇αuλ∇βuγ , (3)

where Mαβλγ a matrix defined as

Mαβλγ = c1g
αβgλγ + c2g

αλgβγ + c3g
αγgβλ + c4u

αuβgλγ . (4)

c1,2,3,4 are dimensionless coupling constants. The action (2) is manifestly invariant under general
diffeomorphism over the spacetime.

The restricted EA-theory is defined by imposing the hypersurface-orthogonality condition
(1) at the level of the action (2), i. e., before deriving the equation of motion. We assume this
restriction from now on. Thus, the action (2) becomes a functional of gµν and T .

In order to address the Hamiltonian formulation of the restricted EA-theory, we first
decompose the spacetime metric gµν in the standard Arnowitt-Deser-Misner (ADM) variables
γij , N and Ni. With these variables the action (2) takes the form

Sae =

∫
N
√
γ
(
KijKij −K2 + (3)R−Mαβλγ∇αuλ∇βuγ

)
d3xdt, (5)

where (3)R is the spatial Ricci scalar, Kij the extrinsic curvature defined by

Kij =
1

2N
(γ̇ij −∇iNj −∇jNi) , (6)

and K = γijKij is the trace of the extrinsic curvature. The dot denotes time derivative,
γ̇ij = ∂γij/∂t. It is supposed that the ADM variables are substituted in the aether Lagrangian
as well. We comment that there are contributions to the kinetic terms of γij coming from the
aether sector. Below we shall see this explicitly.
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Now we implement the perturbations. We choose as the background the Minkowski spacetime
together with the condition T = t, which constitute a solution of the field equations (T = t gives
a zero energy-momentum tensor). We introduce the perturbative variables n, ni, hij and τ in
the following way

N = 1 + ϵn, (7)

N i = ϵni, (8)

γij = δij + ϵhij , (9)

T = t+ ϵτ. (10)

For the sake of simplify computations, in the whole perturbative analysis we impose the
transverse gauge

∂ihij = 0. (11)

After introducing the perturbations (7 - 10) in (5) and (1), we obtain the action of quadratic
order in perturbations. It is

S =
1

β

∫
dtd3x

[
κijκij − λκ2 + α (∂iτ̇ − ∂in)

2 +
β

4
(hij∆hij − h∆h)− βn∆h

−2 (1− β)κij∂ijτ − 2 (β − λ)κ∆τ + (1− λ)(∆τ)2
]
,

(12)

where κij is the linear-order perturbation of the extrinsic curvature,

κij =
1

2

(
ḣij − ∂inj − ∂jni

)
, (13)

κ = κkk, h = hkk and ∆ = ∂kk is the flat Laplacian. α, β and λ are combinations of the coupling
constants defined by

α =
c1 − c4

1− c1 − c3
, β =

1

1− c1 − c3
, λ =

1 + c2
1− c1 − c3

. (14)

These combinations, which are the ones the perturbative theory naturally adopts, can be
identified with the coupling constants of the z = 1 nonprojectable Hořava theory [3]. As we
anticipated, there are contributions to the kinetic term of hij coming from the aether sector;
their presence can be recognized by the fact that the coupling constant β−1 in front of the action
(12) is equal to 1− c1 − c3.

2.2. The Legendre transformation
From the Lagrangian (12) we obtain the following conjugate momenta

ϕ0 =
∂L

∂ṅ
= 0, ϕi =

∂L

∂ṅi
= 0, (15)

pτ =
∂L

∂τ̇
= −2α

β
∆(τ̇ − n) , (16)

πij =
∂L

∂ḣij
=

1

β
[κij − λκδij − (1− β) (∂ijτ)− (β − λ) δij∆τ ] . (17)

Equations (15) are primary constraints. Equations (16) and (17) allow us to solve the variables
τ̇ and ḣij in terms of the canonical variables,

τ̇ = − β

2α∆
pτ + n, (18)

κij = βπij +
βλ

1− 3λ
δijπ + (1− β)∂ijτ +

β(1− λ)

1− 3λ
δij∆τ. (19)
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Notice that this inversion cannot be performed when the constant λ takes the value λ = 1/3.
In the nonprojectable Hořava theory there is an analog to this particular case. Its Hamiltonian
formulation has been studied in Refs. [8, 9]. In that theory two additional second-class
constraints emerge and the extra scalar mode is eliminated. Throughout this paper we assume
λ ̸= 1/3, hence the inversion (19) is consistent. In addition, Eq. (18) requires α ̸= 0.

With these formulas we may build the Hamiltonian, which takes the form

H =

∫
d3x

[
1

β

(
κijκij − λκ2

)
− β

4α
pτ

1

∆
pτ −

1

4
(hij∆hij − h∆h) +

1

β
(λ− 1)(∆τ)2

+nH(1) + niHi(1)
]
,

(20)

where

H(1) ≡ ∆h+ pτ , (21)

Hj(1) ≡ −2∂iπ
ij . (22)

We have put the superscript (1) on these objects to remark that they are of linear order in
perturbations. In the Hamiltonian (20) it is understood that the variable κij must be substituted
by its expression (19) in terms of the canonical variables.

We observe that there is a nonlocal term in the Hamiltonian density (20). This nonlocality
is a mere effect of using a phase space with nonreduced variables. Below we show that, when
the Hamiltonian is reduced to the physical phase space (the reduced Hamiltonian), the resulting
Hamiltonian density is completely local.

Our next step is to implement the Dirac procedure for preserving the constraints in time. The
preservation in time of the ϕ0 and ϕi constraints leads, respectively, to the secondary constraints

H(1) = 0, (23)

Hi(1) = 0. (24)

Subsequently, we impose the preservation in time of these last constraints. We obtain that they
are automatically preserved by the Hamiltonian (20),

Ḣ(1) = {H(1),H} = 0. (25)

Ḣi(1) = {Hi(1),H} = 0. (26)

This closes Dirac’s procedure. Therefore, we have that the set of all constraints is given by ϕ0,
ϕi, H(1) and Hi(1), and all these constraints are preserved. The structure of the Hamiltonian
(20) allows us to make the usual simplification of this kind of generally-covariant theories: n and
ni can be regarded as Lagrange multipliers, such that the conjugated pairs (n, ϕ0) and (ni, ϕi)
can be dropped out from the phase space.

We comment that the Hamiltonian (20) is composed of two parts: a part that is explicitly
the sum of constraints and the other one that is not. On the other hand, this is a theory with
general convariance, which implies the freedom of transforming arbitrary the time. For this kind
of symmetry one expects the bulk Hamiltonian is a total sum of constraints, such that it vanishes
on the constrained phase space. Actually, there is no fundamental contradiction between this
and the fact that H in (20) has terms outside the constraints; the discrepancy is only an effect of
the perturbative theory. The terms in H that do not explicitly belong to constraints arise as a
consequence of truncating the Hamiltonian up to a given order in perturbations. We expect that
the nonperturbative Hamiltonian is effectively a sum of constraints, but this nonperturbative
Hamiltonian is not known for this theory.
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2.3. Symmetries and the reduced Hamiltonian
The two constraints of the theory, H(1) andHi(1), are first-class constraints (this can be explicitly
checked using the full expressions of the constraints without fixing the gauge (11)). This implies
that H(1) and Hi(1) are generators of gauge symmetries. As in linearized GR, Hi(1) is the
generator of purely spatial diffeomorphisms on hij , that is, it is the momentum constraint.

The symmetry associated to this constraint has been already fixed in (11). Interestingly, H(1)

has a double action. It generates transformations on the metric variables associated to time
transformations, as does the Hamiltonian constraint of linearized GR; but it also generates
redefinitions of τ , {

τ,

∫
d3z φH(1)

}
= φ . (27)

Since φ is an arbitrary test function, this transformation is a total redefinition of τ . This
transformation can also be regarded as a diffeomorphism associated to the time coordinate.
Indeed, coming back to the nonperturbative field T , we have that it is an scalar under a general
diffeomorphism given by δxµ = ϵµ(xα),

δT = −ϵµ∂µT. (28)

If we now substitute the perturbative expansion (10) in this transformation rule, at linear order
we obtain

δτ = −ϵ0. (29)

Thus, at linear order the variable τ transforms under a diffeomorphism only with the time
component (at linear order it is invariant under a diffeomorphism affecting only the spatial
directions), and it is totally redefined by the component ϵ0. As we may see from (27), this
transformation on τ is generated by H(1). The fact that this is a symmetry of the theory means
that the dynamics is independent of the particular τ or, in other words, τ is a pure-gauge variable
and can be gauged fixed. In the exact theory, this feature can be traced back to the fact that
the equation of motion corresponding to the variations of the action with respect to the T field
is implied by the other field equations [3].

We are now ready to study the reduced (physical) Hamiltonian, which requires to solve all
the constraints and fix the gauge symmetries. The purely spatial diffeomorphisms have been
fixed by (11). To fix the diffeomorphisms along the time coordiante we choose the gauge in
which τ vanishes,

τ = 0 . (30)

To further advance we decompose the perturbative spatial metric into transverse and longitudinal
parts,

hij = hTT
ij +

1

2

(
δij −

∂ij
∆

)
hT + ∂jh

L
i + ∂ih

L
j , (31)

where these variables are restricted by ∂kh
TT
kl = hTT

kk = 0. We also decompose πij in the same
way as (31). The transverse gauge (11) eliminates the longitudinal sector hLi . By virtue of the
constraint (24) the longitudinal sector of πij is also eliminated. Constraint (23) can be solved
for pτ in favour of hT ,

pτ = −∆hT . (32)

After these considerations, we obtain the reduced Hamiltonian for the true physical degrees
of freedom. It takes the form

HRED =

∫
d3x

[
βπTT

ij πTT
ij − 1

4
hTT
ij ∆hTT

ij +
β(1− λ)

2 (1− 3λ)
(πT )2 − 2β − α

8α
hT∆hT

]
. (33)
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Of course, the variables hTT
ij , πTT

ij are still subject to the conditions of transversality and
vanishing trace. As we anticipated, the reduced Hamiltonian density is completely local.

In order to ensure the positiveness of the reduced Hamiltonian (33), the following conditions
on the coupling constants are required

β ≥ 0,
1− λ

1− 3λ
≥ 0,

2β − α

α
≥ 0. (34)

The second condition can be satisfied only in the ranges λ ∈ (−∞, 1/3) and λ ∈ [1,+∞). The
third condition can be satisfied only in α ∈ (0, 2β]. We recall that we have assumed λ ̸= 1/3
and α ̸= 0 in all the analysis.

From the reduced Hamiltonian (33) the evolution equations of the several modes can be
deduced. From these equations we obtain the second-order equations for hTT

ij and hT ,

ḧTT
ij − β∆hTT

ij = 0, (35)

ḧT − c2s∆hT = 0, (36)

where

cs =

√
β(2β − α)(1− λ)

α(1− 3λ)
. (37)

The conditions (34) on the coupling constants ensure the hyperbolicity of the Eqs. (35) and
(36), hence they are wave equations. The speed of the tensorial modes is

√
β whereas the speed

of the scalar mode is cs.

3. Conclusions
We have successfully performed the Hamiltonian formulation of the linearized Einstein-aether
theory with the condition of hypersurface orthogonality on the aether vector, under which the
aether vector can be modelled via a scalar field. We have focused the problem on a perturbative
approach in order to overcome the difficulties arising in the nonperturbative theory, whose
bulk Hamiltonian is still not known. We have found that the theory possesses two first-class
constraints associated to the symmetry of general diffeomorphisms over the spacetime. This is
in agreement with the fact that the Einstein-aether theory is a theory with general covariance.
In particular, one of the constraints generates diffeomorphisms along the time coordinate on
the scalar field corresponding to the aether. This symmetry transformation is reinterpreted as
this scalar field is a pure-gauge variable. The reduced Hamiltonian is positive if certains bounds
on the coupling constants are imposed. These conditions match with the conditions found in
Ref. [5] in the context of the nonprojectable Hořava theory. We have found that the restricted
EA-theory has three canonical propagating modes, the two transverse-traceless tensorial modes
and a scalar mode. They propagate with wave equations with different speeds. This confirms
that the condition of hypersurface orthogonality eliminates two of the three modes associated
to the aether vector.

It would be interesting to investigate if an iterative process on the perturbative theory
can shed some light on the Hamiltonian of the nonperturbative theory. Another interesting
application of our results is the comparison with the Hamiltonian formulation of the
nonprojectable Hořava theory [10, 11, 12]. The idea is to ellucidate whether both Hamiltonian
formulations are physically equivalent. It is of particular interest to perform the analysis with
general boundary conditions, such that the relation can be determined for general configurations,
not only for asymptotically flat ones.



7

1234567890 ‘’“”

XX Chilean Physics Symposium IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1043 (2018) 012018  doi :10.1088/1742-6596/1043/1/012018

Acknowledgments
F. T. thanks financial support from U. C. N. graduate program. A. R. and F. T. are partially
supported by grant Fondecyt No. 1161192, Chile.

References
[1] Jacobson T and Mattingly D 2001 Phys. Rev. D 64 024028.
[2] Blas D, Pujolas O and Sibiryakov S 2010 Phys. Lett. B 688 350.
[3] Jacobson T 2010 Phys. Rev. D 82 129901.
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