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Abstract. The ultrasonic Time-of-Flight (ToF) estimation may be achieved using different 

algorithms, such as signal processing techniques, artificial intelligence and, statistical 

estimators, among others. These algorithms have a highlight point, which is the guarantee of 

the estimation reliability through the convergence of the results and low estimation uncertainty. 

Hence, this work aims to perform the convergence analysis of the Extended Kalman Filter 

(EKF) algorithm to ToF estimation, with application in wind speed measurement. Therefore, a 

state space model of a delayed sine wave was constructed. The modeling used shows the 

influence of time-varying parameters, which determine the convergence of the states. By 

analyzing the convergence of the algorithm, it was possible to determine the range of variation 

of the model parameters to guarantee the final estimation results. Through the construction of a 

computational model using Matlab@Simulink are presented the simulation results to wind 

speed measurement. 

1. Introduction 

In the energy sector, there are numerous sources of energy available that can be used, standing out in 

the renewable ones, such as wind. Wind energy uses the strength of the wind to generate electricity 

through wind turbines installed in strategic locations. To determine the best locations for the 

installation of wind turbines, it is essential to monitor the wind speed, thus determining statistical 

parameters and constructing a model of it. However, it is required that the sensors used have 

characteristics of low uncertainty, less time constant for the detection of gusts of wind and with 

possibilities of operation in severe environments, such as rainfall, snow, and solar radiation. Thus, 

among the wind speed measurement systems that stand out are the ultrasonic anemometers. These 

instruments indirectly determine the wind speed by means of the ToF ultrasonic transit time, which is 

defined as the travel time of the ultrasonic wave from its emission on a transmitting transducer to its 

detection on a receiving transducer. In the bibliography, several methods are found for ToF estimation, 

such as threshold detection, phase difference, cross correlation, and Kalman filter. 

In [1] and [2], the ToF estimation was approached using the Extended Kalman Filter (EKF) 

algorithm, by means of the estimation of states associated with a delayed sine wave. One of the 

limitations of this approach was the model’s dependence on time-varying parameters. In this scenario, 

the objective of this work is to analyze the convergence of the EKF regarding the time-varying 

parameters of the model, with the purpose of adjusting the parameters of the model to a ToF 

estimation with low uncertainty. 
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2. Proposed procedure: State space model 

Figure 1 shows a measurement configuration using ultrasonic transducers, positioned in a test section 

of a wind tunnel with laminar flow and Reynolds number less than 2000 [3]. In this configuration, the 

wind speed can be found by: 
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where: L is the distance between the transducers,  is the angle between the wind direction and the 

alignment of the transducers, tAB is the time of flight, C is the speed of sound in the air that depends on 

the temperature (TK in Kelvin) given by 20.074 KC T . 

 

 

 

 

Figure 1. Wind tunnel – Test section for 

wind speed measurement. 

 Figure 2. Measurement ToF using threshold 

detection and phase difference. 

 

Figure 2 shows the transmitted (TX) and received (RX) signals. In this figure, it is possible to 

identify the ToF and the techniques for its estimation (threshold detection and phase difference [2] 

[5]). Considering that the signal received on the transducer RX, u(t), is a sum of sinusoidal signals 

composed by: a main ultrasonic signal, y(t), reflected ultrasonic signals with attenuation and delay, 

and additive noise, given by: 
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Where: A, ,  and tTOF are the amplitude, frequency, phase and time-of-flight of the main ultrasonic 

signal; Ai, i, i and tTOFi are the amplitude, frequency, phase and time-of-flight of the reflected 

ultrasonic signal; t is the time and  is the additive noise. 

From equation (2), we have built a nonlinear state space model [1], [4], given by: 
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Where: the states of the model are amplitude x1=A, frequency x2=, phase x3= and the time-of-flight 

x4=tToF; w is the noise of the states with mean zero and standard deviation w; v is the noise of the 

measurements with mean zero and standard deviation v, and the nonlinear functions f(x, t) and g(x, t) 

are given by: 
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In Equation (4) was defined the variables 1, 2, and 3, which are associated with the convergence 

of the Extended Kalman Filter (EKF) used for the estimation of the states from the measurements of 

the received signal amplitude and the ToF obtained by the phase difference technique [1]. In this work, 

it will be analyzed and defined the criteria to obtain the ranges of values of the variables which lead 

the estimator to a quick convergence and with the lowest standard deviation of the estimation. 

 

3. Simulation results: ToF estimation using EKF 

In the interest of implementing the Kalman Filter algorithm for ToF estimation, the Equation (4) was 

discretized considering a sampling period, Ts. Hence, a discrete state space system was obtained, as 

illustrated below: 
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Where: xk is the n-dimensional vector of process states; yk is the m-dimensional vector of current 

measurements; wkN(0, Qk) and vkN(0, Rk) are the sequences of uncorrelated Gaussian noise; f(xk, k) 

and g(xk, k) are nonlinear functions in discrete-time kTs, given by: 
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Through the equations (5) and (6) it concludes that the state space system is nonlinear; therefore, to 

perform the estimation of the states, the extended Kalman filter (EKF – Extended Kalman Filter) 

should be used. Table 1 shows the EKF algorithm to Time-of-Flight (ToF) estimation, where the states 

are defined by the amplitude (A), frequency (), phase () and time-of-flight (ToF). 

 

Table 1. EKF algorithm for the ToF estimation. 
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Figure 3 shows the result of the application of the EKF algorithm on a received signal u(t) and the 

estimation of the parameters of the ultrasonic signal y(t). The estimated parameters by the EKF 

algorithm are associated with the estimated signal given by equation (2), such as: x1 = A, x2 = , x3 =  

and x4 = ToF. Even with satisfactory simulation results, the convergence of the EKF algorithm may 

depend on the values assigned to the variables 1, 2, e 3, which transform the system into a time 

variant system. It can be noticed that even if the received signal has the influence of noise, the Kalman 

filter estimates the states in a robust way. 
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Figure 3. Parameters estimated of the ultrasonic signal using 

the EKF algorithm. 

 

 

4. Convergence analysis of the EKF algorithm for ToF estimation 

To perform the convergence analysis of the EKF with respect to the model parameters in state spaces, 

1, 2, and 3, a computational model was constructed to measure wind speed using 

Matlab@Simulink. The ultrasonic transducers were modeled by means of bandpass Butterwoth filters. 

An additive noise of the Gaussian type with a standard deviation of 0.01 mv was considered. ToF 

represents the delay of the ultrasonic wave from the emission until its detection. In the simulations, a 

ToF equal to 228.931 µs was used (Equation (1)), for a wind speed of 10 m/s, temperature of 40°C, 

distance between the transducers of 83 mm, and angle of inclination of π/4. 

Figure 4 the results of the ToF estimations are illustrated by the EKF algorithm. The variations of 

1, 2, and 3 were considered in the range of 1 to 10000. It is observed that the ToF estimates do not 

change even with the variations of 1 and 2. In these simulations, an uncertainty was obtained in the 

ToF estimation of 0.5 µs, defining a confidence interval in which the result of the theoretical ToF is 

contained [6]. 

On the other hand, in the same figure, it was observed that the ToF estimates undergo changes in 

their estimation in relation to the increase of 3, increasing the uncertainty in the estimation as well. In 

this simulation, an uncertainty of 2 µs was obtained in the ToF estimation. From this result, it can be 

verified that the convergence of the EKF algorithm depends on the values of the model parameters 

(Equations (5) and (6)). Consequently, the uncertainty associated with the state estimate x4 = ToF can 

be compromised for certain values of these parameters. 
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Figure 4. Estimation of ToF by EKF for different variations of 1, 

µ2, and µ3. 

 

In figure 5, the convergence of the EKF for the estimation of the state associated with the ToF is 

shown. Considering 1 = 1, 2 = 1 and variations of 3 = {1,103, 104, 106, 107}. It is possible to observe 

that the standard deviation decreases according to the number of EKF iterations; however, for greater 

values of 3 it is realized that the EKF algorithm does not converge to a minimum value of the state 

variance x4 (ToF). It may also be noted that the minimum standard deviation value was obtained for 

3=1. 

 

 

Figure 5. Standard deviation of ToF estimation through EKF. 

 

 

5. Conclusions 

In this work, the algorithm for the estimation of the ultrasonic transit time based on the extended 

Kalman filter (EKF) was developed. It was observed that the state model is nonlinear and time variant. 

With respect to the nonlinear characteristic, the extended Kalman filter allows an approximation by 

means of a linearization process. Regarding the time-varying characteristic, the model depends on the 

variables 1, 2, and 3, inducing the result obtained in the ToF estimation process, as well as showing 
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the increase in the uncertainty of the estimated value. This result can be explained by the fact that the 

EKF algorithm does not converge for certain values of these variables, making it unstable. As result of 

this analysis is the determination of the possible variations of variables 1, 2, and 3, in which the 

EKF algorithm presents convergence to a ToF value and with low uncertainty. 
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