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Abstract. In this work we used the concept of super-energy flux in General Relativity and the 

monad formalism of Ehlers-Zelmanov to find the comoving observers with the Einstein-Rosen 

cylindrical gravitational waves and obtained their corresponding 3-velocity of propagation with 

respect to a family of observers locally at rest. Therefore, we found that the aforementioned 

waves propagate at subluminal speed in vacuum.  

1. Introduction 

A number of alternative theories to General Relativity have the feature of subluminal propagation of 
gravitational waves (e.g. [2,6-7]). Nevertheless in General Relativity it is assumed that gravitational 

radiation propagates at the speed of light in vacuum [6] for instance this is the case of exact solutions 

like PP-waves. A special case of these solutions are gravitational plane waves, they are the 
gravitational analogue of plane electromagnetic waves. It is clear that gravitational waves propagate at 

the speed of light also in the linearized version of General Relativity. Previous works have shown 

subluminal propagation of gravitational waves in General Relativity in special cases. Bretón, et al [1] 
demonstrated that two colliding gravitational plane waves slow down their propagation speed as they 

approach to the singularity that appear after their collision. Now, if one take into consideration 

cylindrical gravitational waves (Einstein-Rosen waves) [3,8] the situation is somewhat different. In 

this case one cans find commoving observers with the waves which of course means subluminal 
propagation in vacuum. In electromagnetic theory, the Poynting vector is used to measure the flux of 

energy-momentum density. The corresponding gravitational analog is the super-Poynting vector [4] 

although the latter is a measure of the flux of a rather different physical quantity, the super-energy. If 
the super-Poynting vector vanishes in any reference frame, then this frame is at rest or comoving with 

respect to the gravitational field. Using the tools of the monad method [5,9] we determined the 

propagation speed of the comoving observers with respect to a family of observers at rest with respect 

to the symmetry axis in the Einstein-Rosen spacetime. 

2. Einstein-Rosen spacetime 

The Einstein-Rosen solution found in 1937, describes the propagation in vacuum of cylindrically 

symmetric monochromatic gravitational waves or pulses, they approach to the axis of symmetry, and 
then move away of it [3,8]. This solution in cylindrical coordinates is 

 
2 2( ) 2 2 2 2 2 2 2( )K U U Uds e dt dρ e dz e ρ dφ     , (1) 

where K  and U  are functions of ρ  and t  alone, describes the propagation of cylindrical 

gravitational waves in vacuum. This metric satisfies the vacuum field equations  

 
1 0U ρ U U    , (2) 
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2 2( ), 2 .K ρ U U K ρUU      (3) 

The function U can be in principle any solution to the cylindrical wave equation (2) and K can be 

obtained by simple integration using equations (3). Two special cases are of physical importance; the 
first one is that of a monochromatic wave propagating in vacuum, the metric functions are 

 0 0( )cos( ) ( )sin( )mU AJ ωρ ωt AY ωρ ωt   (4) 
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where 0J ( )ωρ  and 0 ( )Y ωρ  are Bessel functions of first and second kinds respectively, A and ω  are 

the wave amplitude and frequency. The second case is known as the Weber-Wheeler-Bonnor pulse, 
the metric functions are 
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3. Gravito-electromagnetism and invariants of the Weyl tensor 

Now we introduce the well-known electric and magnetic Weyl tensors 

 , ,μ ν

αβ μανβ

μ ν

αβ μανβ Y C τ τX C τ τ    (8) 

where C  is the Weyl conformal curvature tensor, the star over indices denotes dual conjugation and 

τ  is a unit time-like 4-covector. There are only four independent algebraic invariants of the Weyl 

tensor and they can be expressed through the fields X and Y 
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 (9) 

Since the quadratic constructions exclusively formed by X o Y are positive definite, it is clear that the 

sign of 1I  determines the electric type (plus) or magnetic (minus) of the field, whereas 1 0I   

corresponds to the null type. The field is purely electric if also 2 0I  , 4 0I  , on the other hand the 

field is purely magnetic if also 2 0I  , 3 0I  . In this work we have softened the purity condition 

described by Mitskievich in [5], requiring only the vanishing of two invariants rather than three. We 

propose to call ultrapure fields those for whom a third invariant vanishes ( 2 0I  , 3 0I  , 4 0I  ). 

When we conclude that the field is purely electric or purely magnetic, means that the alternative field 
can be transformed away by a choice of the reference frame.  

The Einstein-Rosen solution has only two non-vanishing invariants: 
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(11) 

 

The sign in them depends only on the derivatives of ( , )U t ρ . We analyze the sign for a specific 

( , )U t ρ  more in detail below.  

4. Comoving observers 

Let us now introduce the monad field 

 
(0) (1)

(0) (1)τ τ θ τ θ  , (12) 

where (0) ( )K Uθ e dt  and (1) ( )K Uθ e dρ  are elements of the tetrad basis in (1), coordinates will be 

numbered as 0 1 2 3, , , .x t x ρ x φ x z    The co-vector τ can be used as the 4-velocity of the observer 

comoving with the wave when one of the electric or magnetic fields in this spacetime can be 

transformed away. The electric Weyl tensor has the components 
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where 
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The only non-vanishing component of the magnetic Weyl tensor 
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It can be found the observer for the vanishing of Y but not for all components of X. Furthermore, in 
order to define a comoving observer, we have to introduce the super-Poynting vector  

 2 ,γβλμ σγ λν

α αγ β λ μ α λ γν σb T τ τ τ b E X Y τ  ù

ùP  (15) 

where γβλμT is the tensor of Bel-Robinson, αγb projects onto the 3-subspace orthogonal to μτ and σγ

λEù
 is 

the axial tensor of Levi-Civita. This vector represents the flux of super-energy of the gravitational field 

and we can define a comoving observer as that for whom the super-Poynting vector vanishes. Using 
the monad field (12), the super Poynting vector can be reduced for the Einstein-Rosen spacetime to 
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ùP  (16) 

Then two comoving observers arise, the first one can be obtained of the vanishing of (3)

(2)Y  and the 

second one can be obtained of the vanishing of the expression
(2)(2) (3)(3)X -X . Using (0) cosh( )τ ψ  and 

(1) sinh( )τ ψ  as components of the monad field (12) with ψ  being a function to be determined, the 

two comoving observers satisfy the relations  

 2
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5. Propagation speed 
Now we are in position to obtain the 3-velocity of propagation of the comoving observers with respect 

to the frame locally at rest (0)θ  

 
 

 

 
 

 

And since tanh( )v ψ , we can write  
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The invariant 1I  of the Weyl tensor for the monochromatic wave takes positive values and since 

2 0I   this field is of purely electric type. The 3-velocities with respect to the symmetry axis of both 

comoving observers for whom the super-Poynting vector vanishes are shown in Figure 1. The 

observer with velocity Iv  propagates with the impure field of the wave whereas the observer with 

velocity IIv propagates with the purely electric part. 

        
Figure 1. Velocity magnitudes Iv  (left) and IIv  (right) of the Einstein-Rosen monochromatic wave. 

The wave takes velocities near the speed of light on the magenta region and diminishes its speed near 

to zero as it approaches the orange region. Constants A and ω  were set equal to 1. 
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Figure 2. Curves of constant velocities of the Weber-Wheeler-Bonnor pulse for ( , )Iv ρ t . Negative 

values are on the left, black represents 0.8Iv   , brown 0.7Iv   , blue 0.6Iv   , green 0.5Iv   , 

orange 0.4Iv   , purple 0.3Iv   , magenta 0.2Iv   , pink 0.1Iv   , and yellow 0Iv  .  Positive 

values are on the right, black represents 0.8Iv  , brown 0.7Iv  , blue 0.6Iv  , green 0.5Iv  , orange

0.4Iv  , purple 0.3Iv  , magenta 0.2Iv  , pink 0.1Iv  , and yellow 0Iv  . Constants a and C were 

set equal to 1. 
 

The same analysis is applied to the Weber-Wheeler-Bonnor pulse. The invariant 1I  of the Weyl tensor 

takes in this case positive, negative or zero values and since 2 40, 0,I I  this field is of purely 

electric, purely magnetic or purely null type. The 3-velocities with respect to the symmetry axis of 

both comoving observers for whom the super-Poynting vector vanishes are shown in Figure 2 and 3. 

The observer with velocity Iv  propagates with the impure field of the pulse whereas the observer with 

velocity IIv  propagates with the purely electric part. The pulse slows down as it approaches the 

symmetry axis and then is reflected. Both observers are mutually complementary and fill all 

spacetime. 

         
Figure 3. Curves of constant velocities of the Weber-Wheeler-Bonnor pulse for ( , )IIv ρ t . Negative 

values are on the left, black represents 0.8IIv   , brown 0.7IIv   , blue 0.6IIv   , green 0.5IIv   , 

orange 0.4IIv   , purple 0.3IIv   , magenta 0.2IIv   , pink 0.1IIv   , and yellow 0IIv  . Positive 

values are on the right, black represents 0.8IIv  , brown 0.7IIv  , blue 0.6IIv  , green 0.5IIv  , 

orange 0.4IIv  , purple 0.3IIv  , magenta 0.2IIv  , pink 0.1IIv  , and yellow 0IIv  . Constants a 

and C were set equal to 1. 
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6. Concluding remarks 

We have shown that it is possible to find the comoving frame for the Einstein-Rosen gravitational 

waves and therefore they propagate at sub-luminal speed in vacuum. There is a hole family of 
independent but complementary observers that fill all E-R spacetime for whom the super-Poynting 

vector vanishes, they propagate with different speeds, a part of them is comoving just with the gravito-

electric field since the gravito-magnetic field vanishes completely in their frames of reference. 
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