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Abstract. This paper deals with the design and performance analysis of a superconducting DC 

reactor using multi-ply high temperature superconducting (HTS) wire for a high-current DC 

reactor. To design the high-current DC reactor, 2G multi-ply HTS wire (SuNAM Co., Ltd.) 

was used to achieve a high ampacity. The critical current was measured according to the 

bending diameter in order to confirm the bending characteristics of the 2-ply and 3-ply wires. 

The HTS coils for a 1500 A, 400 mH HTS DC reactor were designed based on the 

characteristics of multi-ply HTS wire. Electromagnetic analysis of the toroid-type DC reactor 

was performed with the finite element method. HTS coils were wound with a D-shaped double 

pancake type bobbin. The critical current of the double pancake coil (DPC) modules was 

measured in a liquid nitrogen vessel. The performance test results were compared with the 

analysis results. Based on the critical current of DPC measured at 77 K, it was confirmed that 

1500 A could be flowed at the operating temperature of 20 K. These results will be effectively 

utilized for the design and fabrication of an HTS DC reactor that can be used in real power 

systems.  

1. Introduction 

A DC reactor is a power system application device that reduces the current ripple and harmonics 

generated by thyristors during AC-DC conversion. It is usually used in high-voltage direct current 

(HVDC) systems. Conventional DC reactors are manufactured with metal conductors. However, there 

are some disadvantages to using metal conductors. First, a metal conductor has resistance, which 

inevitably causes electrical loss. As the current increases, the power loss also increases. Second, when 

DC reactors are made with metal conductors, the volume and weight become very large, which limits 

the installation space and insulation structure. These disadvantages can be overcome by using a 

superconducting wire that has zero resistance and a high current density [1]-[2]. However, a high 

temperature superconducting (HTS) DC reactor cannot be used in real kA-class systems. This is 

because the HVDC system current is higher than the critical current of commercial HTS wires. In 

addition, when HTS coils are manufactured, the critical current is decreased due to the magnetic field, 

and it is impossible to use in real HVDC systems with operating currents that exceed 1000 A. The 

authors propose an HTS coil-based DC reactor that can be applied to actual systems. The design target 

is based on high inductance compared to copper-conductor DC reactors used in conventional HVDC 

systems with a current capacity of 1500 A.  

In this paper, a toroid-type HTS magnet for a DC reactor system was designed using 2G multi-ply 

HTS wires, which were made by soldering two or three overlapping HTS wires. The toroid-type 

magnet is suitable for a DC reactor, which should be compact with a large energy capacity because the 

http://creativecommons.org/licenses/by/3.0
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inductance has been increased. As the inductance increases, the magnetic flux density per current also 

increases. However, in the toroid-type coil, the perpendicular magnetic field that has a greater 

influence on the critical current of the HTS coil is reduced. The toroid-type coil can make a high 

operating current and low magnetization loss [3]-[9]. The target inductance and current level of the 

toroid-type HTS DC reactor were 400 mH and 1500 A, respectively. Compared to the characteristics 

of commercial copper reactors, the target capacity is set to a similar capacity and the inductance value 

is doubled. The magnetic fields and the inductances of the magnet using 2-ply and 3-ply HTS wires 

were analysed by the finite element method (FEM) program. Two types of double pancake coil (DPC) 

were fabricated using 2-ply and 3-ply HTS wires and experimented to obtain practical data. These 

fundamental data will be usefully applied to fabricate the entire system of a toroid-type HTS DC 

reactor. 

2. Characteristics of multi-ply HTS wires 

2.1. Specifications of multi-ply HTS wires 

Multi-ply HTS wire is suggested to increase the critical current of conventional single-ply HTS wire. 

Multi-ply HTS wire could increase the critical current by stacking single-ply HTS wires several times. 

Thus, multi-ply HTS wires were fabricated from 12 mm 600 A at 77 K wire from SuNAM Co., Ltd. 

Figures 1 and 2 show the critical currents of single-ply HTS wire at 77 K and 20 K, respectively. The 

maximum output current of the power supply used for the measurement was 2000 A, so we could not 

measure the higher critical current. 

 

 
Figure 1. Critical current of single-ply HTS wire at 77 K 

 

 
Figure 2. Critical current of single-ply HTS wire at 20 K 
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The HTS wire was stacked to 2-ply or 3-ply and then soldered using In-Sn. The average thicknesses of 

the fabricated 2-ply and 3-ply HTS wires were 0.34 mm and 0.48 mm, respectively. These thicknesses 

include stacked HTS wire, kapton tape for insulation, and solder for the HTS wire stacking. Figure 3 

shows the critical current of 2-ply, 3-ply, and single-ply HTS wires at 77 K. The reference voltage for 

the critical current is 1 uV / cm. The critical currents of single-ply, 2-ply, and 3-ply were measured as 

614 A, 1166 A, and 1713A, respectively. The 2-ply wire has a 95% critical current of twice the critical 

current of a single-ply wire, and the 3-ply wire has a 93% critical current of three times the critical 

current of a single-ply wire. 

 

 

Figure 3. Critical currents of single-ply, 2-ply and 3-ply HTS wires at 77 K 

2.2. Bending test of multi-ply HTS wires 

2G HTS wire is fabricated in tape form according to the characteristics of the material. Therefore, the 

degradation of critical current due to bending occurs. The manufacturer of the HTS wire provides the 

information for the minimum double bending diameter of a single-ply HTS wire. The minimum 

double bending diameter of the single-ply HTS wire must be greater than 30 mm. However, in the 

case of the multi-ply HTS wire, it is necessary to measure the critical current according to the bending 

diameter because the ampacity characteristics of 2-ply or 3-ply wires were changed. Diameters from 

70 mm to 40 mm were measured every 10 mm in a liquid nitrogen temperature. The HTS wire was 

bent using a constant weight as shown in figure 4.   

 

 
Figure 4. Jig for the HTS wire bending 
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The bent wire was straightened again, and then the critical current was measured in liquid nitrogen. 

Figure 5 shows the experimental results at the point of degradation of the critical current. The critical 

currents of the 2-ply and 3-ply HTS wires were decreased in the bending diameter ranges of 50 ~ 60 

mm and 60 ~ 70 mm, respectively. In the figure, the voltage of 10 uV is due to the high current ramp 

rate of the power supply and is not a factor in the results. 

 

 
Figure 5. Measurement of the critical current while considering bending diameter 

3. Design of the 1500 A, 400 mH superconducting toroid-type DC reactor coil 

3.1. Design of the toroid-type DC reactor coil 

Figure 6 shows the detailed structure of a D-shaped HTS coil and a toroid-type DC reactor magnet. 

The DPC was joined at the inner straight portion of the D-shaped coil with a 5 mm gap between the 

two single pancake coils. The distance from the center of the DPC to the center of the reactor was 295 

mm, and each DPC was arranged at an angle of 12 degrees. In figure 6, the parameter “N” is the 

thickness of the HTS wire multiplied by the number of turns. N was determined through analysis by 

the design goals of the 1500 A and 400 mH.  

 
(a)                                                                                   (b) 

Figure 6. Detailed structure of the HTS DC reactor magnet: (a) a D-shaped HTS coil, (b) a toroid-

type DC reactor magnet. 
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3.2. FEM simulation results of the DC reactor coil 

Figure 7 shows the results of the magnetic field distribution analysis, which was conducted on one-

half of the DPC with a selected boundary condition [10]. 

 

Figure 7. Electromagnetic analysis of the DC reactor coil: (a) the perpendicular magnetic field, (b) the 

parallel magnetic field 

 

The values were applied to all of the DPCs in order to determine the overall parameters of the 

magnets. When the operating current was assumed to be 1500 A, the maximum perpendicular flux 

density and the maximum parallel flux density of the 2-ply HTS DC reactor magnet were 2.06 T and 

4.66 T, respectively; in the case of the 3-ply DC reactor magnet, they were 1.96 T and 4.62 T, 

respectively. The calculation results of 2-ply and 3-ply inductances were 401.66 mH and 405.85 mH, 

respectively. The detailed specifications of the 1500 A, 400 mH toroid-type HTS DC reactor magnets 

are shown in Table 1. 

 

Table 1. Specifications of the toroid-type multi-ply HTS DC reactor magnet. 

Items 2-ply 3-ply 

Wire width 12.2 mm 12.2 mm 

Wire thickness 0.34 mm 0.48 mm 

Co-winding SUS-tape thickness 0.1 mm - 

Number of turns 58 turns 58 turns 

Reactor inductance 401.66 mH 405.85 mH 

Perpendicular magnetic field at 1500 A 2.06 T 1.96 T 

Parallel magnetic field at 1500 A 4.66 T 4.62 T 

Calculated HTS DC reactor critical current at 20 K 2280 A 3380 A 

 

4. Fabrication and performance test of a DPC module 

DPC module bobbins for the critical current measurement of multi-ply HTS coils were produced. 

Figure 8 shows the detailed structure of a DPC module coil in a multi-ply HTS DC reactor. The 2-ply 

and 3-ply HTS wires were wound into the DPC modules for 58 turns. 

 

(a) (b) 



6

1234567890 ‘’“”

30th International Symposium on Superconductivity (ISS2017) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1054 (2018) 012079  doi :10.1088/1742-6596/1054/1/012079

 

 

 

 

 

 

     
 

Figure 8. 3D modeling of a fabricated DPC: (a) the assembled DPC module, (b) the parts of the DPC 

module 

 

The calculated critical current of the 2-ply DPC module was 315 A, and the inductance was 5.62 

mH. In the case of the 3-ply DPC module, the critical current was 420 A, and the inductance was 5.59 

mH. The critical current was calculated by considering the intensity of the magnetic field and the 

angle dependency [11]. The critical currents of the 2-ply and 3-ply DPC modules were measured at 77 

K. Figure 9 shows the actual DPC using 2-ply and 3-ply HTS wires. Voltage signal lines for the 

critical current measurement were attached near the current terminals. 

 

        
(a)                                                                                (b) 

Figure 9. DPC module coil with signal line connection for voltage measurement (red circle): (a) 2-ply 

DPC, (b) 3-ply DPC 

 

 Figure 10 shows the critical current measurement results of DPC modules at 77 K. The 

experimental results show that the 2-ply and 3-ply DPC modules’ critical currents were 322 A and 421 

A, respectively. The experiment was performed at a current ramp rate of 1 A / s. As a result, as the 

voltage is biased to about 5.7 mV, the inductance is 5.7 mH due to V = L (di / dt). 

(a) (b) 
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Figure 10. The critical current measurement results of DPC modules 

5. Conclusions 

In this study, a 1500 A, 400 mH D-shaped toroid-type HTS DC reactor magnet with multi-ply HTS 

wire was designed. The characteristics of the multi-ply HTS wire and the reduction of the critical 

current according to the bending diameter were presented. The multi-ply HTS wire included 2-ply and 

3-ply HTS wires. The critical current degradation of the multi-ply HTS wire was less than 7%. The 

operating current and inductance of the designed DC reactor were concluded to be 1500 A, 401.66 mH 

(2-ply), and 405.85 mH (3-ply). The critical current of the 2-ply HTS DC reactor, when considering 

the intensity and angle of the magnetic field at 20 K, was 2280 A; it had a margin of about 34% at the 

operating current of 1500 A. In the case of the 3-ply HTS DC reactor, 3380 A had a margin of about 

56%. Considering that the critical current margin of the superconducting applications is about 30% on 

average, it can be confirmed that the target value of this paper can be achieved sufficiently with the 2-

ply HTS wire. In the case of an HVDC system, which needs a higher current capacity, 3-ply (or more) 

HTS wire can be used. Through the experiments, the performance characteristics (inductance and 

critical current) of a DPC module for the toroid-type HTS DC reactor magnet were tested in a liquid 

nitrogen temperature. The fundamental data will be applied to an actual-scale HTS DC reactor system 

on a real HVDC system.  
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