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Abstract. The classical linear discriminant analysis (LDA) was previously modified by 
orthogonal projection into null space LDA (N_LDA) and direct LDA (D_LDA) for solving 
small sample size (SSS) problem. In this paper, the author proposes an extension of LDA by 
oblique projection, wherein N_LDA and D_LDA are included as special cases, to reduce 
discriminative information loss resulted from single N_LDA or D_LDA. The effectiveness of 
the proposed algorithm is tested by image forensics and face recognition. 

1.  Introduction 
Linear discriminant analysis (LDA) is one of the most popular means in pattern recognition [1]. The 
objective of LDA is to find a projection W that maximizes the ratio of the between-class scatter matrix, 
Sb, against the within-class scatter matrix, Sw, i.e., via the following Fisher criterion: 

.maxarg)(
T

T

WWS

WWS
WJ

w

b

Wopt =                                                        (1) 

One of the major drawbacks of LDA is the so-called small sample size (SSS) problem encountered 
in many practical applications involving high dimensional data [1]. Many techniques have been 
proposed to solve this problem, and Ref. [2] may be consulted in detail. Among them, the most notable 
approaches are null space LDA (N_LDA) and direct LDA (D_LDA) [2, 3], which are based on the 
following modified Fisher criterion [4]: 

.00 TT ≠= WWSandWWS bw                                                       (2) 

Since N_LDA and D_LDA are based on orthogonal projection, and generally the two conditions in 
equation (2) cannot be simultaneously satisfied, the processes are usually fulfilled in two steps: in 
N_LDA the null space of Sw is found first and then that of Sb is discarded, while in D_LDA the reverse 
order is taken. In this manner, much discriminated information may be lost. 

In this paper, an extension of LDA is proposed by oblique projection, and it is called OP_LDA, for 
reduction of possible loss of discriminative information in N_LDA or D_LDA. Experimental results 
on image forensics and face recognition show satisfactory performance of the proposed method. 

The rest of this paper is organized as follows. An overview of N_LDA and D_LDA is briefly 
introduced in Section 2. Section 3 describes OP_LDA and discusses the relationship among N_LDA, 
D_LDA and OP_LDA. In Section 4, we evaluate the performance of OP_LDA and compare its 

http://creativecommons.org/licenses/by/3.0
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performance with LDA, N_LDA, D_LDA, and 2-dimensional LDA (2D_LDA) [5]. Finally, 
conclusions are given in Section 5. 

2.  N_LDA and D_LDA 

2.1.  N_LDA 
In N_LNA, the discriminative information can be found in the null space of Sw by two steps [2]: 

Step 1: Find the null space of Sw, Null(Sw). 
Step 2: Let Sb′=PNull (Sw)(Sb), and then 

,)(Col1 bSPW ′=                                                                     (3) 

where PNull(Sw)(Sb) is a matrix obtained by orthogonal projecting the column vectors of Sb onto 
Null(Sw), Col(Sb′) is the column space of Sb′, PCol(Sb′) is an orthogonal projection operator onto Col(Sb′). 

Figure 1 depicts a simple example of this algorithm, where v is an arbitrary vector in the input 
space, and v′ is a new vector obtained from v by N_LDA. 

 
Figure 1. A simple example of N_LDA. 

2.2.  D_LDA 
In D_LNA, the discriminative information can be found in the column space of Sb by two steps [3]: 

Step 1: Find the column space of Sb. 
Step 2: Let Sw′=PCol(Sb)(Sw), and then 

,)(|Null2 )(Col wbS SPW ′=                                                                (4) 

where PCol(Sb)(Sw) is a matrix obtained by orthogonal projecting the column vectors of Sw onto 
Col(Sb), Null|Col(Sb)(Sw′) is the null space of Sw′ in Col(Sb), PNull|Col(Sb)(Sw′) is an orthogonal projection 
operator onto Null|Col(Sb)(Sw′). 

Since rank(Sb), the rank of matrix Sb, is usually smaller than rank(Sw), and in this case 
Col(Sw′)=Col(Sb) and Null|Col(Sb)(Sw′)={0}, the solution of D_LDA is given by 

.)(Col2 bSPW =                                                                    (5) 

Figure 2 depicts a simple example of this algorithm, where v is an arbitrary vector in the input 
space, and v′ is a new vector obtained from v by D_LDA. 
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Figure 2. A simple example of D_LDA. 

3.  Proposed method 

3.1.  OP_LDA 
We present a new LDA algorithm based on oblique projection, named OP_LDA. The objective of 
OP_LDA is to find a projection operator W that satisfies equation (6), which also is special 
circumstance of equation (2). 

.00 ≠= bw WSandWS                                                            (6) 

The key idea of our algorithm is that W is an oblique projection operator, whereas the traditional 
methods take it as orthogonal projection. A particular solution of equation (6) is given by 

,)(Col|)(Col3 wb SSPW =                                                                 (7) 

where PCol(Sb)|Col(Sw) is an oblique projection operator onto Col(Sb) along Col(Sw), and W3 can be 
obtained from Col(Sw) and Col(Sb), Ref. [6] may be consulted in detail. 

Figure 3 depicts a simple example of this algorithm, where v is an arbitrary vector in the input 
space, and v′ is a new vector obtained from v by OP_LDA. 

 
Figure 3. A simple example of OP_LDA. 

3.2.  Discussion 
As shown in Figure 1, Figure 2 and Figure 3, there are three means to obtain v′: a. discarding the 
component of Col(Sw), b. keeping that of Col(Sb), and c. discarding that of Col(Sw) and keeping that of 
Col(Sb) simultaneously. So it is clear that OP_LDA including N_LDA and D_LDA as special cases 
when Col(Sw) and Col(Sb) are orthogonal. 
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The traditional methods emphasize Sw or Sb respectively, and our method emphasizes Sw and Sb 
simultaneously. For discarding Col(Sw) in N_LDA, Sb is converted into Sb′ by projecting onto Null(Sw). 
Since there are differences between Sb and Sb′, discriminated information may be lost by adopting Sb′. 
The similar drawback may appear in D_LDA. Therefore discriminative information loss in N_LDA or 
D_LDA may be reduced by adopting Sw and Sb directly in OP_LDA. 

3.3.  Analysis 
The following condition needs to be satisfied in using PCol(Sb)|Col(Sw): the direct sum of Col(Sb) and 
Col(Sw) must be equal to the input space [6]. Since the direct sum is the sum of two disjoint spaces, it 
includes two meanings: the sum of Col(Sb) and Col(Sw) must be equal to the input space, and Col(Sb) 
and Col(Sw) must be disjoint, i.e., Col(Sw)∩Col(Sb)={0}. 

Since the sum of Col(Sb) and Col(Sw) is a subspace of the input space, PCol(Sb)|Col(Sw) is invalid for 
vectors which do not belong to the sum space. Therefore we project vectors in this case onto Col(St) 
first, where St denotes the total scatter matrix. Since Null(Sw)∩Null(Sb)=Null(St) has been proven in 
Ref. [7], and Sw, Sb and St are symmetric matrixes, it is clear that Col(St) is the sum of Col(Sb) and 
Col(Sw). 

If Col(Sw)∩Col(Sb)≠{0}, PCol(Sb)|Col(Sw) does not exist. This is a more complicated problem. In this 
paper we consider a simple scheme as follow: 





 =

=
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)(Col)(Null|)(Col

)(Col)(Col|)(Col
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twb
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wwSSS I
                                         (8) 

where PCol(St) is a orthogonal projection operator onto Col(St), PCol(Sw)Null(Sb) is a space obtained by 
orthogonal projecting the vectors of Null(Sb) onto Col(Sw), and PCol(Sb)|PCol(Sw)Null(Sb) is an oblique 
projection operator onto Col(Sb) along PCol(Sw)Null(Sb). 

Figure 4 depicts a simple example of our method, where v is an arbitrary vector in the input space, 
and v′ is a new vector obtained from v by equation (8). It is clear that we want v′ to lie in Col(Sb) and 
discard the partial components of Col(Sw). 

 
Figure 4. A simple example of proposed method for Col(Sw)∩Col(Sb)≠{0}. 

4.  Experimental results 

4.1.  Experimental setup 
We illustrate the efficacy of the proposed method on image forensics and face recognition. As 
application-based development, some parameters and schemes have been empirically determined in 
our implementation. 

For finding the null space and the column space of an arbitrary symmetric matrix, M, we perform 
first the singular value decomposition of M as M=U∑VT, and then let Col(M)=span{u1,…,ur} and 
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Null(M)=span{ur+1,…,un}, where U=[u1,…,ur,ur+1,…,un], u1,…,ur correspond to the nonzero 
eigenvalues, and ur+1,…,un correspond to the zero eigenvalues [8]. 

In order to conform whether Col(Sb) and Col(Sw) are disjoint, we consider a simple scheme via the 
following dimensional formula [9]: if rank(St)=rank(Sb)+rank(Sw), then Col(Sw)∩Col(Sb)={0}, 
otherwise Col(Sw)∩Col(Sb) ≠{0}. 

To evaluate the performance of the proposed method, the training samples are randomly selected 
about half of the image dataset to train the classifier, and the remaining images are used in testing. 

4.2.  Image forensics 
OP_LDA is tested by blurring detection in image forensics. The dataset and feature extraction are 
same as Ref. [10], wherein details can be found. The dataset consists of 183 authentic images and 183 
forged images, and three types of feature vectors respectively consisted of the singular values of gray 
image matrix, correlation coefficients for double blurring operation, and image quality metrics are 
extracted and then fused for forgery detection. 

In comparison, Table 1 lists the detection rates of the following four different detection schemes: 
feature fusion obtained respectively by LDA, N_LDA, D_LDA, and OP_LDA, respectively plus 
Euclidean distance (ED) classifier. In this table, “--” means that LDA is ineffective, due to the SSS 
problem. 

Table 1. Detection rate vs. different schemes in image forensics. 

Scheme Detection rate (%) 

LDA+ED -- 
N_LDA+ED 86.81 
D_LDA+ED 60.55 
OP_LDA+ED 86.81 

 
Since image forensics is in fact a binary classification problem, and in this case Null(Sw) is lost in 

D_LDA, D_LDA performs poor. While Col(Sb) is kept in N_LDA , so N_LDA obtained the same 
result as OP_LDA in this experiment. 

4.3.  Face recognition 
OP_LDA is tested by face recognition using three face datasets: YALE, ORL, and PIE, details can be 
found in Ref. [5]. The YALE dataset contains 165 face images of 15 persons. The image size is 
100×100. We subsample the images down to a size of 25×25. The ORL dataset contains 400 face 
images of 40 persons. The image size is 92×112. We subsample the images down to a size of 23×28. 
The PIE dataset is a subset of the CMU_PIE face image dataset. It contains 6615 face images of 63 
persons. The image size is 486×640. We subsample the images down to a size of 98×128. Table 2 lists 
the recognition rates of the following five different schemes: feature extraction obtained respectively 
by LDA, N_LDA, D_LDA, OP_LDA, and 2D_LDA, respectively plus ED classifier. 

Table 2. Recognition rate vs. different schemes in face recognition. 

Database 
Scheme YALE ORL PIE 

LDA+ED -- -- -- 
N_LDA+ED 92.93 93.6 100 
D_LDA+ED 87.87 89.1 96.39 
OP_LDA+ED 93.07 93.75 98.59 
2D_LDA+ED 92.53 93.4 99.99 
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The results demonstrate that our proposed method can achieve comparable performance to 
2D_LDA in [5]. Compared to the prior arts in [2, 3], OP_LDA performs better than N_LDA and 
D_LDA in using YALE and ORL face datasets. Due to the SSS problem, LDA is ineffective in these 
experiments. 

5.  Experimental results 
An extension of LDA by oblique projection for solving SSS problem is proposed in this paper. Instead 
of using orthogonal projection, oblique projection is adopted to reduce possible discriminative 
information loss in N_LDA or D_LDA, two popular modified versions of the traditional LDA. 
Experimental results on image forensics and face recognition showed satisfactory performance of the 
proposed method. OP_LDA may be converted into a nonlinear version by kernel method, which is one 
of our future tasks. 
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