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Abstract. This study aims at realizing a 3-D dynamic bipedal walking using two oscillators of a 
CPG approach based on its body dynamics. We have developed a 3-D biped that comprises flat 
feet with force sensors, ankle joints composed of ball joints surrounded by coil springs, 
telescopic knees, and active hip joints using a direct drive (DD) motor. We introduced the Owaki-
Ishiguro method called ‘TEGOTAE based approach’ as ground contact information in the phase 
oscillator to the knee joint, and we achieved 3-D dynamic bipedal gait using RW06 only by the 
knee oscillation based on the phase oscillator. The bipedal walking was excited only by the knee 
oscillation, therefore, the gait was strongly affected by the body dynamics. This means that the 
gait might be affected strongly by disturbances, because passive dynamic walking, which 
achieved only by the body dynamics and interaction to environment, is not robust against such 
disturbances. In this study, therefore, we conduct some experimental tests to elucidate 
adaptability against ground variations.  

1. Introduction 
Passive dynamic walking [1] is emerged only by body dynamics of a biped and interaction to 
environment with body. The passive dynamic walking has an interesting characteristic of realizing a 
natural and energy efficient gait adapting to the environment according to its morphology. We assume 
that the body dynamics including the interaction to the environment stabilizes the bipedal gait implicitly. 
However, the passive dynamic walking and strategies based on the passive dynamic walking mechanism 
are not robust against disturbances mainly from the environment. In contrast, a central pattern generator 
(CPG), obtained by Biological findings, was introduced to control legged robots, and achieved various 
adaptive and robust locomotion including bipeds [2-5]. Some studies showed possibility of an adaptive 
three-dimensional (3-D) bipedal walking [5], however, there was no systematic design strategy for the 
coordination of oscillators excepting the studies for multi-legged robots by Owaki and Ishigro [6-11]. 
In addition, the CPG signal was used only for the desired trajectory of the tracking control of joints. The 
trajectory tracking control for the joints might neglect the body dynamics for the locomotion. For the 
problem, Hanamoto, et al [8], introduced some passive joints for a quadruped robot to achieve a dynamic 
locomotion. For the bipedal walking, the body is fundamentally supported by a foot and the center of 
the total mass goes outside of the foot print while the biped walks dynamically. Generally speaking, it 
is difficult to obtain a stable and dynamic bipedal walking with passive degrees of freedom that should 
be controlled by the body dynamics only. For the problem, we have developed a 3-D dynamic bipedal 
walking using two oscillators of a CPG approach based on the body dynamics. However, robustness or 
adaptability of the obtained gait was not evaluated. This study, therefore, aims at evaluating the 
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robustness or adaptability of the gait using the phase oscillator with ground reaction forces. First, we 
introduce our 3-D biped called RW06 that comprises flat feet with some force sensors, ankle joints 
composed of ball joints surrounded by coil springs, telescopic knee joints, and actuated hip joints using 
a direct drive (DD) motor. Next, we introduce the Owaki-Ishiguro method called ‘TEGOTAE based 
approach’ [10] as ground contact information in the phase oscillator to the knee joint. Finally, we 
conduct some experimental tests in order to elucidate robustness or adaptability of the biped.  

2. 3-D Bipedal Walker RW06 
We have developed a 3-D biped with ankle springs and flat feet, ‘RW03’, and realized 3-D passive 
dynamic walking gait [12]. We added a telescopic knee joint to RW03, and develop some 3-D bipeds, 
‘RW04’ and ‘RW05. We achieved 3-D dynamic bipedal gait for the bipeds on a horizontal surface using 
a forced oscillation by the knee joint [13]. In this section, we introduce a new biped, ‘RW06’ with hip 
actuators based on the previous bipeds. 
 

 
Figure 1. RW06 frontal view, rear view, and left side view, and DD motor and force 
sensor equipped on the sole. 

 

2.1. RW06 
Figure 1 shows the 3-D dynamic biped, RW06. RW06 is height of 900 mm, the total weight of 6.4 kg, 
the center of the total mass of 450 mm from the ground, and the eigenfrequency of 4.3 rad/s for a swing 
leg and 5.1 rad/s for the lateral oscillation, which are inherent characteristics of the previous bipeds. A 
direct-drive (DD) motor is implemented to a hip joint for back-drivable actuation as shown in figure 1. 
The DD motor can realize free oscillation of the hip joints using the back-drivability and generate an 
appropriate torque for walking, simultaneously, even though torso is controlled by the DD motors using 
a PD control law. This property ensures a torque control for the hip joints instead of usual trajectory 
tracking.  

2.2. Phase Oscillator via ‘TEGOTAE’ Approach [10]  
In the section, the previous method using the sinusoidal oscillation is extended to the phase oscillator 
based on ‘TEGOTAE approach’ [10]. The TEGOTAE approach uses the ground reaction force (GRF) 
as ‘TEGOTAE’, which means a good reaction from the target, i.e. the ground, for control of the phase. 
Eqs. (1) and (2) are extended to the phase oscillator given as the following equations: 
 

                               (1) 
                                                 (2) 
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Equation (1) shows the time response of the phase zi of the left and right knees, where, Ni indicates the 
GRF measured by the ith force sensor as shown in figure 1, s is the weight of the GRF of the foot sole. 
Equation (2) shows the desired trajectory for the knee oscillation. The both knee start the oscillation for 
the initial phase difference of zero. However, when the GRF in Eq. (1) provides force alternately caused 
by something such as an external oscillation, then the knee frequency of the stance leg decreases due to 
the second term of Eq. (1). The phase of the stance knee delays relative to the swing knee around the 
extended position. When the foot sole feels the GRF and the weight s is enough large, the phase zi 
converges to 3p/2. Therefore, the knee tends to maintain the extended position when the leg touches to 
the ground. We expect that the bipedal gait is excited by the knee oscillation changing the phase with 
the GRF. 

3. Experiment 
We conducted performance tests that evaluated a kind of adaptability, climb-ability, for a gentle ascent. 
The angle of the ascent consisted of some aluminum board of 15 mm, and was 1.5 degrees. The length 
of the slope was 2 m. Two horizontal areas were connected to the slope. For the desired trajectory, the 
amplitude A and the angular frequency were 8.0 mm and 1.8 p rad/s, respectively. Figure 2 shows an 
experimental result. From the figure, RW06 could climb the gentle ascent.  
 

 
Figure 2. Walking gait of RW06 on a gentle ascent. 

 
The left figure of figure 3 shows the relative angle between the both legs. In the figure, the stride 
decreases around 8s, it keeps the small stride of 7 degrees until 13 s, and RW06 steps on the same area 
from 14 s to 16 s. RW06 started climbing around 8 s and approached to the horizontal area around 14 s. 
After several stepping, it started walking forward again on the horizontal area, even though the stride 
was oscillatory. To clarify the foot stepping, the ground reaction forces of the both foot are shown in the 
right of figure 3. The ground reaction forces also decreased when RW06 started climbing, and it was 
lost when RW06 approached to the horizontal area. The force sensors located at the front of sole did not 
contact to the ground in the area where the slope angle discretely changed from 1.5 to 0. In the horizontal 
area, the ground reaction force was also oscillatory. The horizontal area was put on the floor that was 
not flat; and thus, the area was trembled because of the movement of RW06. We also conducted some 
experimental tests using the sinusoidal knee oscillation in order to compare the performance of the both 
methods, however, RW06 could not climb the same slope. Therefore, we can conclude that the phase 
oscillator using the ground reaction force had adaptability against gentle ascent. 
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Figure 3. Hip joint angle (left) and ground reaction forces (right). 

4. Conclusions 
In this paper, we developed a 3-D biped ‘RW06’, designed a phase oscillator based on ‘TEGOTAE’ 
approach, realize 3-D dynamic bipedal gait, and evaluated adaptability against a gentle ascent. The gait 
was generated using body dynamics, because all degrees of freedom of the biped excepting knees and 
torso were passive. The previous strategy using a simple sinusoid explicitly could not climb the gentle 
ascent. It is important that the 3-D gait is emerged only using the phase oscillator of the knee joint and 
the body dynamics. For future works, we will elucidate the gait variation for angular frequency, 
amplitude, ground reaction force, and so on. 
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