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Abstract. The Cornell-BNL ERL Test Accelerator (CBETA) is a new multi-turn energy
recovery linac currently under construction at Cornell University. It uses two superconducting
linacs, both of which are susceptible to microphonics detuning. The high-current injector
accelerates electrons to 6 MeV and the main linac accelerates and decelerates electrons by
36 MeV. In this paper, we discuss various measures taken to reduce vibrations caused by
instabilities and flow transients in the cryogenic system of the main linac cryomodule. We
further describe the use of a Least Mean Square algorithm in establishing a stable Active
Microphonics Compensation system for operation of the main linac cavities.

1. Introduction

The Cornell-BNL ERL Test Accelerator (CBETA)[1, 2] is a multi-turn Energy Recovery Linac
(ERL), currently under construction at Cornell University. It will be the first multi-turn ERL to
use Superconducting Radio Frequency (SRF) cavities for acceleration. The Injector Cryomodule
(ICM) which is a part of the Cornell high-current photo-injector[3] will be responsible for
accelerating high beam currents for injection into the ERL loop. The Main Linac Cryomodule
(MLC)[4] will execute energy recovery in the machine. CBETA will also be the first ERL to have
multiple energy return loops in one beampipe. This will be achieved with Non-Scaling Fixed
Field Alternating Gradient (NS FAG)[5] optics employing permanent magnets for it’s return
arc. Operating this machine presents unique challenges and one of them will be maintaining
the energy stability of multiple beams with different energies simultaneously using a single main
linac. CBETA will be the first high current electron accelerator to use active microphonics
compensation to help achieve this goal.

ERL operation is similar to electron time of flight spectrometers[6], consequently stability of
electric fields in the SRF cavities is an important issue. Microphonics detuning arising out of
transient deformation of the SRF cavities due to mechanical vibrations in the cryomodule is a
major source of perturbations. In this paper, we report on the microphonics measurements done
on the injector and the main linac and identify the sources. Then we discuss modifications of the
cryogenic valves to reduce the majority of microphonics. Finally, we discuss our implementation
of an active microphonics compensation system and present the results of our experiments.

1 Present Address: Fermi National Accelerator Laboratory, Batavia, Illinois, USA
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Figure 1. Microphonics measurement on all main linac cavities. The left panel shows the
histogram of microphonics detuning. The right panel shows RMS detuning as a function of
vibration frequency.

2. Microphonics Measurements

The change in resonant frequency (detuning) of a SRF cavity increases the RF power consumed
by the system to maintain field[7] and has a detrimental effect on accelerating field stability.
The injector cavities operate with large beam loading and have QL ∼ 5 × 104 which results
in large bandwidth and relatively less sensitivity to detuning. Previous measurements indicate
a comparatively high peak detuning (∼300 Hz) which is however much smaller than the RF
bandwidth and hence is sufficient to permit high current operation. In contrast, the main linac
cavities of CBETA are designed to be operated at about QL ∼ 6×107 using solid state amplifiers
capable of delivering a maximum forward power of 5 kW. Particular care has been taken in the
design of the MLC cavities to reduce the effect of transient mechanical forces. Microphonics
detuning may get particularly strong if the external vibration excites one of the many mechanical
eigen-modes the cavity-tuner-cryomodule structure may have. Since mechanical energy of eigen-
modes increase quadratically with frequency, the cavity structure has been designed to have
higher frequency vibrational modes which are harder to excite. To this effect, three of the six
SRF cavities in the MLC have been mechanically optimized by using stiffening rings [8]. Further,
all SRF cavities used in the CBETA project are equipped with fast tuners to compensate for
transient detuning [9, 10].

The microphonics measurements of the main linac cryomodule are shown in Fig. 1. Cavities
2, 4 and 6 are fitted with stiffening rings and exhibit peak microphonics detuning well below the
54 Hz limit[11] posed by the limited forward power capability of the solid state power amplifiers
whereas the other cavities suffer from very high peak detuning. The raw microphonics data
shows sudden bursts of peak detuning occurring intermittently almost every 10 minutes, as
much as 280 Hz in cavity 3. This severely limits the maximum field which can be maintained by
the RF system. Apart form the transient bursts, steady vibrations of 8Hz, 40Hz and 80Hz can
be seen in the spectrum of detuning. These observations motivated the use of 10kW amplifiers
to drive the un-stiffened cavities along with the inclusion of 3-stub tuners to ease the constraints
on the accelerating field. In the interest of suppressing microphonics as much as possible we
identified the major sources and discuss them in the next section.

3. Microphonics Sources and Passive Suppression

Microphonics measurements in the MLC reveal two classes of vibrations, sudden large detuning
which only sustain for a few milli-seconds in the whole period of measurement (800 seconds) and
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Figure 2. Planned modification of the valve stem of a cryogenic needle valve to constrict the
flow of Helium gas in the space between the stem and the inner wall of the valve chamber. The
black sleeves are made of PEEK plastic material suitable for cryogenic temperatures.

steady state narrow band oscillations at 8Hz, 40Hz and 80Hz. The sudden detuning have a
negligible effect on the spectrum and is broadband which make active compensation complicated.
On investigating various cryogenic pressures and flows it was found that sudden actuation of a
cryogenic needle valve coincided with the generation of these impulses. On making this valve
static, the peak detuning in cavity 3 of the main linac was reduced from 280 Hz in the default
operating conditions to 50 Hz in this setting. However this valve is responsible for regulating
the flow of liquid Helium into the 2K-2 phase Helium pipe in the cryomodule and the static
condition leads to a slow runaway of the liquid Helium level. A feedback controlled heater was
used with the valve remaining largely open to regulate the system and this led to an final peak
detuning of 100 Hz which mostly consist of steady state vibrations.

Steady state narrow band oscillations can arise from rotary mechanisms such as pumps or
from cryogenic instabilities. Measurements from various possible sources and microphonics
detuning indicate a substantial cross-correlation with vibration of a cryogenic valve stalk. The
design of the MLC includes needle valves whose stalk extend outside the cryomodule into
room temperature generating a thermal gradient in the Helium gas contained in the valve
chamber leading to thermo-acoustic oscillations driving 40 Hz and 80 Hz. This instability
can be attenuated by filling up the space between the valve stem and the inner walls of the
chamber as illustrated in Fig. 2 and is planned to be done later this month. However, the exact
mechanism of excitation of the 8 Hz vibrations remains unknown but we have observed that
it’s intensity depends on gas flow out of the helium gas return pipe indicating that this might
be a mechanical eigen-mode of the pipe-cryomodule system. In the next section we discuss a
procedure to actively compensate for these vibrations.

4. Active Compensation

Resonance control of high loaded quality factor SRF cavities is important for ERL operation to
maintain good field stability using relatively modest amounts of power. In CBETA, apart
from passive suppression, we use frequency tuners built with fast piezo-electric actuators
to compensate for transient detuning. Depending on the frequency of vibrations, we have
implemented two algorithms in the Cornell Low Level Radio Frequency (LLRF) [12] control
system. A proportional-integral (PI) control loop is very effective at low frequencies (¡1 Hz)
and we have demonstrated it successfully in both the injector [13] and the main linac [11]. The
mechanical transfer function [14] of the fast tuner system at higher frequencies exhibit complex
phase structure which make it less suitable for a simple PI feedback loop and we compensate
most part of microphonics detuning using a Least Mean Squares (LMS) technique.

Least Mean Square (LMS) control aims to reduce the mean square of frequency detuning
〈(δf(t))2〉 in the case of cavity resonance control. A time domain version of this algorithm
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Figure 3. Performance of Least Mean Squares compensation on three cavities of the Main
Linac Cryomodule in CBETA. The results from these runs are summarized in table 1.

Table 1. Peak Detuning in the Main Linac Cavities

Cavity Stiffened Peak Detuning (Hz)
Initial Static Valves LMS on

1 No N/A 78 45
2 Yes 18 N/A N/A
3 No 2802 100 57
4 Yes N/A 18 N/A
5 No 163 N/A N/A
6 Yes 33 N/A 15

relies on continuously adapting a digital control filter in response to it’s performance.[15] In
our algorithm, we have taken advantage of the largely narrow band nature of the vibrations
measured in our cryomodule as is clear from the spectrum shown in Fig. 1. The signal sent to
the actuator is thus a sum of carefully controlled sinusoids:

upz(tn) =
∑
m

Im(tn) cos(ωmtn) +Qm(tn) sin(ωmtn) , (1)

where upz(tn) is the actuator signal at time tn which is a sum of sines with frequencies ωm whose
amplitude and phase are determined by Im(tn) and Qm(tn) . These are adjusted using a simple
gradient descent optimization scheme similar to least squares fitting:

Im(tn+1) = Im(tn)− μmδfcomp(tn) cos(ωmtn − φm) (2a)

Qm(tn+1) = Qm(tn)− μmδfcomp(tn) sin(ωmtn − φm) (2b)

where δfcomp is the compensated detuning, φm is the phase difference between a sine wave of
frequency ωm applied to the piezo and the response of detuning to the perturbation (transfer
function phase) and μm is the frequency dependent rate of gradient descent.

2 The very high measured value of peak detuning is due to a systematic error in phase measurement of the field.
The actual value of peak detuning is probably �100Hz.
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Figure 4. Peak RF power used to maintain 3 MV of accelerating voltage on cavity 3 (un-
stiffened) as a function of time. LMS compensation is initially turned on and then switched off
at 190 seconds, finally turning it back on at 265 seconds demonstrating that it reduces peak RF
power consumption by a factor of 2.

This algorithm works quite well for a stiffened cavity as shown in Fig. 3. The transfer function
is more noisy for an un-stiffened cavity and slight changes in frequency requires large changes
in φm. This phase can be updated in-situ following the same gradient descent technique:

φm(tn+1) = φm(tn)− ηmδfcomp(tn)× (3){
Im(tn) sin(ωmtn − φm(tn))−Qm(tn) cos(ωmtn − φm(tn))

}
,

where we introduce ηm which is the phase change adaptation rate. We applied the modified
algorithm to un-stiffened cavities 1 and 3 as shown in Fig. 3. The results from various runs are
summarized in table 1 which clearly shows that the algorithm is effective in reducing detuning by
more than 60% in all the cavities it was tested on. In further evidence of detuning compensation,
the improved LMS algorithm reduces the power consumption appreciably (Fig. 4) and in a stable
manner becoming indispensable for the operation of CBETA.

5. Conclusion

Microphonics detuning is a crucial parameter in the operation of the SRF linacs used for the
CBETA project. RF measurements on the high QL cavities in the main linac reveal lower
microphonics in mechanically stiffened cavities while the un-stiffened cavities are subject to
transient detuning much larger than their bandwidth. While thermo-acoustic instabilities
in the needle valve are responsible for steady state vibrations at 40 Hz and 80 Hz, sudden
mechanical bursts have been correlated to cryogenic valve actuation. By suppressing these
movements and implementing an alternate route of cryogenic regulation we have shown that
the peak microphonics can be greatly reduced. Further we demonstrate a resonance control
system using piezo-electric tuners which is capable of attenuating both low and high frequency
steady microphonics using a proportional integral and a least mean square feedback approach
respectively. Active and passive suppression of microphonics together have been instrumental
to reach the goal of 36 MeV total energy gain in the main linac of CBETA.

Immediate work will involve turning on all cavities simultaneously and measure the long
term performance of the RF system. Future work will include research on new compensation
techniques. Successful operation of the MLC for energy recovery will also involve understanding
how microphonics affects field stability in high loaded quality factor SRF cavities and whether
any improvements in the field control loop can help alleviate it’s effects.
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