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Abstract. The analytic orbit state deviation prediction model derived based on the 

State Space Perturbation Method (SSPM) has proven effective and efficient to predict 

the impact error of ballistic missile caused by the J2 term. However, the accuracy of 

this analytic model declines when the prediction point is located in the ascending 

portion of an orbit with large eccentricity. To deal with this problem, a second-order 

correction algorithm is proposed in this paper by deriving the partial derivatives of the 

analytic integral function with respect to the reference two-body orbit parameters. 

Three application scenarios are adopted to verify the accuracy of the proposed orbit 

state deviation prediction model, namely orbit injection point deviation prediction of 

carrier rocket, impact deviation prediction of ballistic missile and re-entry point 

deviation prediction of space shuttle. The accuracy of the proposed model is compared 

with the one without second-order correction as well as the Kozai’s solution. 

Simulation results show that the proposed model has high precision in each case.  

1.  Introduction 

The orbit prediction and correction is always the fundamental problem of celestial mechanics. For a 

spacecraft (e.g. satellite or rockets) moving under the effect of Earth’s oblateness, namely the second 

zonal harmonic J2 in the gravitational potential field, the orbit is no longer a standard ellipse. 

Analyzing the influence to orbit by geophysical perturbation factors essentially belongs to spacecraft 

orbit perturbation problem. Generally, methods utilized to deal with this problem can be classified into 

the special perturbation method and the general perturbation method [1]. The former uses direct 

numerical integration to get an exact solution, which mainly includes the Cowell’s method and the 

Encke’s method, while the latter normally obtains an approximate analytical solution through power 

series expansion, which mainly consists of the average methods with Brouwer-type or Kozai-type, the 

non-singular analytical method in terms of K-S elements and the linearization method.  

The average methods have been greatly developed and widely used in the field of artificial 

satellites in recent decades since they were derived by Brouwer [2] and Kozai [3], and many 

improvements have been done after their pioneering work [4-8]. However, many of these theories 

which use mean elements are very difficult to implement for on-board real-time computation because 

of their complexity, and the mean elements should be calculated by some iterative algorithms from the 

initial osculating elements which also limits their computational efficiency.  
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Of all the perturbation methods, the linearization method does not provide an exact description of 

the motion but is an enormously valuable tool when used for short-term orbit prediction. Basically, the 

approach is to linearize the equations of motion by a series expansion about a nominal or reference 

orbit in which only first-order terms are retained. For the results to remain valid it is necessary to 

restrict the magnitude of the deviations from the nominal orbit. Ren [9] initially derived the analytical 

solution of the state transition matrix for the classical perturbed Keplerian motion with respect to the 

six-dimension state vector. Zheng [10] improved this method and named it State Space Perturbation 

Method (SSPM) in his PhD’s thesis, and then used it to predict the trajectory of rocket in its coast 

phase. Wang [11] derived an analytic orbit state deviation prediction model with respect to the J2 

perturbation of the earth, and it has high accuracy for the applications of ballistic missile’s impact 

point prediction. However, the accuracy of this analytic model declines when the prediction point is 

located in the ascending portion of an orbit with large eccentricity.  

To deal with this problem, this paper proposes a second-order correction algorithm by deriving the 

partial derivatives of the analytic integral function with respect to the reference two-body orbit 

parameters. Simulation results show that the proposed model has high precision in different 

application scenarios. 

2.  Perturbed dynamics model of spacecraft 

2.1.  Perturbed differential equation 

The perturbed differential equation of spacecraft’s motion in the Local-Vertical-Local-Horizontal 

(LVLH) frame can be expressed as 
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 (1) 

and, figure 1 shows the perturbed motion of spacecraft in the LVLH frame. The superscript of '  in 

Eq.(1) denotes the differential operator with respect to the true anomaly f , and vr , vf and vz are the 

components of the velocity vector in the LVLH frame. r  and z  are the components of position vector 

in the LVLH frame. t  denotes the flight time of spacecraft from the initial point. r, f and z are the 

components of the perturbing force vector in the LVLH frame, and  is the gravitational constant of 

the earth.  

O

f

A

Nominal orbital 

plane
Nominal orbit

True orbit

Q

P



re

fe
ze

Q

 

Figure 1. The perturbed motion of a body in 

the LVLH frame. 
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Let refX  and X  respectively represent the nominal state vector and true state vector of spacecraft, 

or,  
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then the differential equation of for nominal motion and true motion in vector style can be written as 

 ( , )ref ref fX F X  (3) 

 ( , ) ( , )f f X F X U X  (4) 

It is noticed that the perturbation term ( , )fU X  is small. Let expand Eq.(4) at Eq.(3) by Taylor 

series and retain the first-order term, then one gets 
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And we have [10] 
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where X  is called the state deviation vector, i.e. ref  X X X . h  is the magnitude of angular 

momentum vector and p  is the semi-latus rectum of the nominal orbit.  

2.2.  J2 term gravity expression in the LVLH frame  

The gravity vector of J2 term in the LVLH frame can be expressed as [11] 

 

 

 

 

2

0 1 2 14 4

2

3 4 24 4

2

1 2 34 4

3 3
( cos 2 sin 2 )

1 2 2
( sin 2 cos 2 )

1
( cos sin )

r

ref ref

f

ref ref

z

ref ref

U K K
q q f q f T f

r r r

U K K
q f q f T f

r f r r

U K K
q f q f T f

r z r r








       


      



 

   


 (7) 

Where 
2U  presents the gravitational potential of the J2 term, 2

23 4eK J a .  0,1,2,3,4kq k   are 

constant coefficients.  

2.3.  Analytic integral function 

The six-dimensional state transition matrix 
1 0( , )f fΦ  for the state deviation differential equation (5)

has be derived by a crafty transformation in [11]. According to the linear system theory, for systems of 
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being subjected to continuous changed disturbance, the state vector at 
1f  can be calculated by the 

initial conditions of 
0( )fX , as following 
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Where 
1( )ky f  denotes the component of 

1( )fX  and  , 1,k j f   denote the element of 
1 0( , )f fΦ  

located at the k
th
 row and j

th
 column.  

3.  Second-order correction algorithm 

From Eq.(8), we can know that the value of the integrand function in each integral step is determined 

by the reference orbit parameters. However, the true orbit parameters are changing all the time due to 

the J2 perturbation. Let's rewrite the expression (8) as, 
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where  , ,n k refH X  represents the integrand function which is related to the reference orbit 

parameters. If the state deviation vector  ky   at every locations on the reference orbit are given, we 

can obtain the second-order correction values for each component of  ky   
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The partial derivatives with respect to the position components are listed below, 
3
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It is noticed that the  ky   should be known when we want to calculate the second-order 

correction values according to Eq.(10). Here, we introduce a possible strategy to deal with this 

problem. Firstly, selecting a set of reference points between the initial point and prediction point, and 

usually five points are enough if the true anomaly interval is less than 180 degrees. Secondly, 

calculating the state deviations on these selected points based on Eq.(8). Finally, fitting every 

components of the state deviation vector based on the following function 

 
0 1 2 3 2 4sin cos cos cos sini

k k k k k ky a a f a f a f a f f      (22) 

4.  Simulation 

Numerical simulations are conducted in this section to verify the effectiveness of the proposed model. 

The state deviations caused by the Earth’s oblateness are calculated by numerical integration, the orbit 

state deviation prediction mode without correction, the proposed method in this paper. The results 

calculated by numerical integration are regarded as the standard for accuracy estimate, and the residual 

errors of position are focused to reveal the presented method’s accuracy in different initial conditions.  

Besides, the first-order analytic solution based on Lagrange's planetary equation with the same 

perturbing acceleration investigated by Kozai has also been used to compare with the presented 
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method, and the first-order and second-order secular terms, first-order long period term and short 

period term are considered in this solution, and the second-order effects of semi-major axis is also 

calculated in order to guarantee the computation precision of mean anomaly.  

Three simulation cases are conducted to verify the accuracy of the proposed orbit state deviation 

prediction model, namely orbit injection point deviation prediction of carrier rocket, impact deviation 

prediction of ballistic missile and re-entry point deviation prediction of space shuttle. The initial 

conditions for these three cases are listed in table 1. 

Table 1. Initial Conditions. 

Parameters Symbols 
Values 

Case A Case B Case C 

Semi-major axis (km) a 6378 6178 6978 

Eccentricity  e 0.5 0.43 0.3 

Inclination deg i 0-180 0-180 0-180 

RAAN deg  0 0 0 

Argument of perigee deg  270 270 270 

Initial true anomaly deg f0 60 120 180 

Terminal true anomaly deg f1 180 240 300 

 

Figure 2, 4 and 6 show the position deviations caused by the J2 term for these three cases, and all 

these values are calculated by numerical integral. It is noticed that the maximum position deviation for 

these three cases exceed 65 km, 12 km and 8 km, respectively. Moreover, the maximum value appears 

at inclination equal 0, 90 and 180 degrees.  

Figure 3, 5 and 7 illustrate the computation residuals of the position deviation for these three cases. 

It is clear that the presented model has high precision in each case, while the accuracy of the analytical 

solution without second-order correction for case A declines dramatically.  

  

Figure 2. Position deviation caused by J2 for 

case A. 

Figure 3. Computation residuals for different 

solutions for case A. 
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Figure 4. Position deviation caused by J2 for 

case B. 

Figure 5. Computation residuals for different 

solutions for case B. 

  

Figure 6. Position deviation caused by J2 for 

case C. 

Figure 7. Computation residuals for different 

solutions for case C. 

5.  Conclusions 

In order to overcoming the descent of precision for the analytic orbit state deviation prediction model 

when the prediction point is located in the ascending portion of an orbit with large eccentricity, a 

second-order correction algorithm is proposed in this paper by deriving the partial derivatives of the 

analytic integral function with respect to the reference two-body orbit parameters. Three application 

scenarios are adopted to verify the accuracy of the proposed orbit state deviation prediction model, 

namely orbit injection point deviation prediction of carrier rocket, impact deviation prediction of 

ballistic missile and re-entry point deviation prediction of space shuttle. The accuracy of the proposed 

model is compared with the one without second-order correction as well as the Kozai’s solution. 

Simulation results show that the proposed model has high precision in each application cases. 
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