
Journal of Physics: Conference
Series

PAPER • OPEN ACCESS

Belle II Conditions Database
To cite this article: M Ritter et al 2018 J. Phys.: Conf. Ser. 1085 032032

View the article online for updates and enhancements.

You may also like
Dark Sector first results at Belle II
Marcello Campajola and on behalf of the
Belle II collaboration

-

Analysing the charged scalar boson
contribution to the charged-current B
meson anomalies
Jonathan Cardozo, J H Muñoz, Néstor
Quintero et al.

-

The beam test measurements of the Belle
II vertex detector modules
T. Bilka

-

This content was downloaded from IP address 3.139.83.7 on 14/05/2024 at 20:43

https://doi.org/10.1088/1742-6596/1085/3/032032
https://iopscience.iop.org/article/10.1088/1402-4896/abfef2
https://iopscience.iop.org/article/10.1088/1361-6471/abc865
https://iopscience.iop.org/article/10.1088/1361-6471/abc865
https://iopscience.iop.org/article/10.1088/1361-6471/abc865
https://iopscience.iop.org/article/10.1088/1361-6471/abc865
https://iopscience.iop.org/article/10.1088/1748-0221/12/03/C03002
https://iopscience.iop.org/article/10.1088/1748-0221/12/03/C03002
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsu7R-j2FtWjf08BMVlcGprgNE-VUqTC-nbQ74G9FiC6Hs1m9p4gAR-ASPYAjKVTZ7whzzaJVVCFsSfNpLnH1_u3JQhWWrNgXxP8qCXcG1dLNZZJXOe3F7tFGwgjQi0qxHGzl6w13EPo8i6I4fKI-BXW6A5YqcS0FScDjvaI0UyVzf9zy4bcpBmSkpnObRPMew7AwtX-ULSGirVIK-qxS2FhxWq0v0zyGZTuRLLo1kEcW5hXaV8bsQE3hE2uB8g6b9qhYRDryDnuJ9c2k72rJNrO4Km4SXMBf3gBGOZ4kzH2Ck53njD9h5XX9PNpFp7ggWtyZQc0JblvSwenYrkk-QZApbpltw&sig=Cg0ArKJSzDzHMBF_QVUW&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 032032 doi :10.1088/1742-6596/1085/3/032032

Belle II Conditions Database

M Ritter1, L Wood2, T Kuhr1, M Bracko3, T Elsethagen2, K Fox2,
J Hall2, C Pulvermacher4 B Raju2, M Schram2, E Stephan2,
1 Ludwig-Maximilians University Munich, Excellence Cluster Universe, Boltzmannstr. 2,
85748 Garching, Germany
2 Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, USA
3Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
4High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801, Ibaraki,
Japan

E-mail: Martin.Ritter@lmu.de, Lynn.Wood@pnnl.gov

Abstract. The Belle II experiment at KEK is preparing for taking first collision data in
early 2018. For the success of the experiment it is essential to have information about varying
conditions available to systems worldwide in a fast and efficient manner that is straightforward
for both the user and maintainer. The Belle II Conditions Database was designed to make
maintenance as easy as possible. To this end, a HTTP REST service was developed with
industry-standard tools such as Swagger for the API interface development, Payara for the Java
EE application server, and the Hazelcast in-memory data grid for support of scalable caching
as well as transparent distribution of the service across multiple sites.

On the client side, the online and offline software has to be able to obtain conditions
data from the Belle II Conditions Database in a robust and reliable way under very different
situations. As such the client side interface to the Belle II Conditions Database has been designed
with a variety of access mechanisms which allow the software to be used with and without an
internet connection. Different methods to access the payload information are implemented to
allow for a high level of customization per site and to simplify testing of new payloads locally.
Changes to the conditions data are usually handled transparently but users can actively check
whether an object has changed or register callback functions to be called whenever a conditions
data object is updated. In addition a command line user interface has been developed to simplify
inspection and modification of the database contents.

1. Introduction
The Belle II detector [1] and the SuperKEKB accelerator are currently under construction at
the KEK laboratory in Tsukuba, Japan. The aim of this next generation B factory experiment
is to collect 50 times more data than its predecessor Belle [2] and to use this data to search
for new physics in a variety of B meson, charm hadron, or τ lepton decays with unprecedented
precision. This requires detailed information on varying calibration and detector conditions to
be available when analyzing the data.

The Belle II software Framework (basf2) [3] is a C++/Python framework to process the
events recorded by the Belle II detector. Events are grouped in so-called runs which mark a
data-taking period with stable operating conditions. Recorded events are processed one by one
using a sequential set of algorithms called “modules.” As all events are independent from each

http://creativecommons.org/licenses/by/3.0

2

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 032032 doi :10.1088/1742-6596/1085/3/032032

other we can benefit from current architectures with multiple cores by processing different events
in parallel.

The Belle II Conditions Database is designed as a representational state transfer (REST)
service. Communication is performed by standard HTTP using XML and JSON data. The
database manages conditions data on run granularity. Binary objects called payloads which
are defined for a certain interval of validity (IoV) are grouped into so-called global tags. The
conditions database is by design agnostic to the contents of the payloads and only identifies
them by name and revision number. The integrity of all payloads is verified using a checksum
of the full content.

One requirement for the conditions client interface is that it needs to also work inside the
data acquisition network which does not have a network connection to the outside. To facilitate
this the client can also use a local, file-based backend which reads the list of payloads from an
index file and the payload contents from files in a given directory. Command line tools written
in Python allow easy downloading of all payloads and IoVs defined in a global tag to be used
locally or uploading a locally prepared folder to be available for all users.

2. Server side
2.1. Implementation
The current configuration of the Belle II conditions database back-end is shown in Figure 1. The
left and right sides represent two servers, one of which supports the REST API and database,
while the other provides access to the payload data files. Each component in the figure above is
implemented using Docker [4], a software framework that supports virtualization of user-space
instances as opposed to full virtual machines, which reduces resource requirements, provides
auto-restart functionality for each component separately, and provides a basis for scalability by
instantiating multiple identical containers.

Figure 1. Current implementation of the conditions database back-end. Database and payload
file access are handled separately by separate services.

Communication with the database uses standard HTTP using XML or JSON data. The
choice of a standardized REST API makes the client coding independent of the actual database

3

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 032032 doi :10.1088/1742-6596/1085/3/032032

implementation details, and allows for easy caching support using a Squid [5] HTTP cache
proxy server to reduce load on the API and database. The database itself is PostgreSQL, but
the schema and procedures have been kept generic so other database applications could be used
if necessary. To keep the database small, the payloads only consist of references to files on
the separate payload file server. The payload files are currently assumed to be ROOT objects
by the client, although there is nothing in the database design that limits the data type. The
REST API interface is built from two commercially-available applications. Payara Micro [6] is a
Java EE application server optimized for production operations in a containerized infrastructure
such as Docker. Hazelcast [7] is a Java-based in-memory data grid. Data can be distributed
evenly among separate nodes of a computer cluster, which provides horizontal scaling in both
available storage space and processing power. This provides multiple benefits, including caching
of frequently-used data in memory, transparent scalability, and load-balancing to reduce the
query load on the database.

The file server currently consists of three NGINX [8] HTTP servers handled by a load balancer
to distribute traffic evenly across the servers. The back-end file system is based on Lustre [9],
an open-source parallel file system for high-performance computing environments. The Lustre
file system is shared between all back-end instances.

2.2. Performance
The back-end has been evaluated with both direct access by Grid-based Belle II Monte Carlo
campaigns and directed testing by the Belle II database group. The directed testing was done
using Gatling [10], an open-source load stress testing tool for HTTP servers which allows custom
test design through scripting. Testing of the database back-end was implemented by monitoring
the usage patterns during Monte Carlo operations and then writing separate tests for the REST
API and file server. The use of scripting allowed for much higher stress loads than was readily
available from Grid-based testing. Recent performance results are shown in Figure 2. The top
graph shows the database server responding successfully to 80 requests per second, while the
bottom graph shows the payload file server responding to 180 file requests per second, with up
to 10,000 open connections being handled simultaneously by the load-balanced HTTP servers.
These tests correspond to nearly half of the payload bandwidth for the expected full-scale Belle
II grid-based analysis cloud of 100,000 active nodes.

2.3. Future Improvements
Several improvements to the Belle II Conditions Database are in progress: Hazelcast supports
cache clustering between remote sites, and will be evaluated as a means of supporting more
localized database access worldwide. Placing portions of the cache at three or more sites will
provide faster response times as well as backup capability for site or network outages. The
PostgreSQL database is still a single-site instance and not currently scalable. Several options of
supporting a distributed database are being investigated, including OpenStack Trove [11] and
CockroachDB [12]. The replicated databases would be sited in tandem with the Hazelcast cache
cluster sites. Authentication is currently not implemented, but is planned for services that would
modify the database. The possibility of leveraging the X.509 authentication already present in
the Belle II Grid computing interface is being investigated.

3. Client side
The choice of a standardized REST API makes the client implementation independent of the
actual database implementation details and allows for a simple and flexible implementation of
clients in different programming languages.

4

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 032032 doi :10.1088/1742-6596/1085/3/032032

Figure 2. Performance results. Top graph shows Gatling stress testing of the database server;
bottom graph show testing of the payload file server.

3.1. Access of Conditions Objects
The software framework assumes that payload contents are serialized ROOT [13] objects. User
access to conditions objects is provided using two interface classes, one for single objects called
DBObjPtr and one class for arrays of objects called DBArray. These class references payload
objects, so called DBEntry objects in a global store, the DBStore. Multiple instances of the
interface class all point to the same object. Access to the conditions objects is available in C++
and in Python where the class interface has been designed to be as close as possible to the
already existing interface for event level data. Users familiar with the event level storage should
have few problems accessing conditions data.

The interface classes always point to correct payload object for the current run, updates are
transparent to the user. If the user needs to be aware when the object changes they can either
manually check for changes or register a callback function to be notified on change. Figure 3
visualizes the relations between all the entities.

The objects in the global store are updated at the beginning of each run if needed. To
allow for conditions which change inside of one run the client supports a so-called intra run
granularity: Payload objects which inherit from an abstract base class IntraRunDependency

can contain multiple objects for different parts of the run. The correct one will be selected
transparently depending on certain criteria like event number or timestamp.

3.2. Creation of Conditions Data
To create payload objects we also provide two interface classes to simplify the procedure of
preparing the objects, serializing them and committing them to the database. Users can just
instantiate one of the creation classes, add objects to them and commit them to the configured
database with a user supplied IoV. This includes support for intra run dependency. The
possibility for a local file based database allows for easy preparation and validation of payloads
as is needed during the calibration of the detector.

5

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 032032 doi :10.1088/1742-6596/1085/3/032032

Figure 3. Relationships for the Conditions Database Interface. The user only interacts
with the DBObjPtr and DBArray classes, everything else is handled transparently and can be
configured independently.

Once all payloads are verified they can be uploaded to the central database using a standalone
command line client developed in python. In addition this command line client allows inspection,
modification and download of parts of the database contents.

3.3. Storage backends
Payloads in the central database are represented by logical filename, revision number and content
checksum. While the central server provides a way to download all payloads directly via HTTP
this is not the only possible distribution system. As the payloads are usually a large number of
small files it might be beneficial to investigate alternative ways to distribute them. The database
client can easily accommodate different storage implementations for the payloads by defining
a cascade of storage backends to look for the actual payload content. After downloading the
metadata on all needed payloads it will check all configured backends one by one for the needed
files. If no storage backend contains the required payload it will automatically try to directly
download the payload from the central server.

Currently only file based storage, for example shared filesystems or Cern-VM FS [14] are
implemented. However it would be trivial to extend this to other technologies, for example
key-value based storage systems like MICA [15]. Also hybrid systems where multiple payload
objects are consolidated into larger archives similar to git packfiles [16] could be considered as
well. This allows for a highly flexible distribution of the needed payload files which can be
adapted as the content of the conditions database evolves.

The fallback solution to simply download missing payloads over HTTP makes it trivial to
use the software without the need for explicit payload storage configuration.

4. Summary
Access to conditions data is a crucial part of the data processing. We have implemented a high
level interface to the Belle II Conditions Database using a REST API. Access for the users is
kept as simple as possible by requiring them just to instantiate one interface class to gain access
to the correct data for any given event.

Distribution of the actual payload contents is highly flexible and can be expanded or
configured easily. Any missing payloads will automatically be downloaded via HTTP so no
special setup is required.

6

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 032032 doi :10.1088/1742-6596/1085/3/032032

Acknowledgements
Portions of this work were carried out for the U.S. Department of Energy under Contract DE
AC05 76RL01830 PNNL-SA-121968.

References
[1] Abe T et al. 2010 Belle II Technical Design Report Preprint arXiv:1011.0352
[2] Abashian A et al. 2000 The Belle Detector Nucl. Instrum. Meth. A 479 117
[3] A Moll 2011 The Software Framework of the Belle II Experiment J. Phys.: Conf. Series 331 032024
[4] Docker Platform, ”Docker” [software], available from http://www.docker.com/ [accessed 2017-10-26]
[5] Squid Caching Proxy, ”Squid” [software], available from http://www.squid-cache.org/ [accessed 2017-10-26]
[6] Payara Micro Server, ”Payara Micro” [software], available from http://www.payara.fish/payara_micro

[accessed 2017-10-26]
[7] Hazelcast In-Memory Data Grid, ”Hazelcast” [software], available from http://www.hazelcast.com [accessed

2017-10-26]
[8] NGINX HTTP Server, ”NGINX” [software], available from http://www.nginx.com [accessed 2017-10-26]
[9] Lustre parallel HPC file system, ”Lustre” [software], available from http://www.lustre.org [accessed 2017-

10-26]
[10] Gatling Load and Performance Test Tool, ”Gatling” [software], available from http://www.gatling.io

[accessed 2017-10-26]
[11] OpenStack Trove Database as a Service, ”OpenStack Trove” [software], available from http://www.

openstack.org/software/releases/ocata/components/trove [accessed 2017-10-26]
[12] CockroachDB Cloud-Based Database, ”CockroachDB” [software], available from http://www.

cockroachlabs.com [accessed 2017-10-26]
[13] Brun R and Rademakers F 1997 ROOT - An Object Oriented Data Analysis Framework, Nucl. Instrum.

Meth. A 389 81. See also ”ROOT [software], Release v6.08.06, doi:10.5281/zenodo.848819
[14] P Buncic, C Aguado Sanchez, J Blomer, L Franco, A Harutyunian, P Mato and Y Yao 2010 CernVM a

virtual software appliance for LHC applications J. Phys.: Conf. Series 219 042003
[15] H Lim, D Han, D Andersen and M Kaminsky 2014 11th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 14) (Seattle: USENIX Association) pp 429–444
[16] Git Project, ”Git” [software], available from https://www.git-scm.com [accessed 2017-10-23]

