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Abstract. Portable and efficient vectorization is a significant challenge in large software
projects such as GeantV, ROOT, and experiments’ frameworks. Nevertheless, fully exploiting
SIMD parallelism will be a required step in order to bridge the widening gap between the
needs and availability of computing resouces for data analysis and processing in particle physics.
Although there are SIMD libraries that wrap compiler intrinsics into a convenient interface, they
do not always support all available architectures, or they only perform well in some of them.
The VecCore library was created to address some of these performance and portability issues
by providing a unified abstraction layer on top of existing libraries, such as Vc or UME::SIMD.
In this article, we discuss VecCore’s programming model for SIMD code and some use cases in
HEP software packages such as VecGeom and GeantV.

1. Introduction
Experiments at CERN have an ever increasing demand for computational resources, be it for
simulated collisions or data analysis. In the last few decades, this demand has been met by
hardware upgrades of the Worldwide LHC Computing Grid. However, with the next runs of
the LHC approaching, the expected increases in beam luminosity will push this demand far
beyond the limits of what further hardware upgrades can reach. Therefore, in order to bridge the
widening gap between the needs of the HEP community and the existing computing resources,
HEP software will need to be optimized to be able to fully exploit SIMD and multithreading
parallelism available in modern hardware.

One of the key areas through which performance can be substantially improved in HEP
software is SIMD vectorization. Even so, writing efficient SIMD vectorized code is a significant
challenge in many large software projects such as GeantV[1, 2], ROOT[3], and the experiments’
frameworks. On the one hand, compilers cannot reliably auto-vectorize simulation and analysis
software. One the other hand, while there are SIMD libraries that wrap the cumbersome
compiler intrinsics functions into a more convenient interface, these libraries often target specific
architectures, which means they may not work on ARM, for example. Therefore, it makes sense
to be able to switch between libraries depending on the target architecture, to be able to use the
best option on each platform.

2. The VecCore Library
The VecCore library was created in order to solve the lack of portability and unreliable performance
problems usually associated with SIMD code. VecCore provides a simple API for users to express
their SIMD-enabled algorithms that can be dispatched to different backend implementations,
such as the SIMD libraries Vc [4] and UME::SIMD [5], or even CUDA, if the code has the proper
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annotations. Vc in general has very good performance on systems that support the AVX2 SIMD
instruction set, but its latest release, Vc 1.3.3, has no support for the more recent AVX512.
Conversely, UME::SIMD focuses on scalar emulation for multiple architectures, while optimizing
newer architectures first, which makes it perform quite well on AVX512, but the performance
double precision types on AVX2 may not be as good as Vc[6]. In this paper we use the latest
release, UME::SIMD 0.8.1.

Using VecCore, developers can write generic computational kernels using abstract types that
map to the different concrete types in each backend. The API for vectorization provided by
VecCore is architecture-agnostic, making it easy to fallback to scalar types on platforms that do
not have SIMD instructions. Moreover, users do not have to change their code to switch between
backends or target architecture. The API covers the essential parts of the SIMD instruction set
that allows one to write many of the numerical algorithms needed by HEP software. The API
functions are shown in Listing 1 and their operations are illustrated in Figure 2.

namespace vecCore {

template <typename T> struct TypeTraits;

template <typename T> using Mask = typename TypeTraits<T>::MaskType;
template <typename T> using Index = typename TypeTraits<T>::IndexType;
template <typename T> using Scalar = typename TypeTraits<T>::ScalarType;

// Vector Size
template <typename T> constexpr size_t VectorSize();

// Get/Set
template <typename T> Scalar<T> Get(const T &v, size_t i);
template <typename T> void Set(T &v, size_t i, Scalar<T> const val);

// Load/Store
template <typename T> void Load(T &v, Scalar<T> const *ptr);
template <typename T> void Store(T const &v, Scalar<T> *ptr);

// Gather/Scatter
template <typename T, typename S = Scalar<T>>
T Gather(S const *ptr, Index<T> const &idx);

template <typename T, typename S = Scalar<T>>
void Scatter(T const &v, S *ptr, Index<T> const &idx);

// Masking/Blending
template <typename M> bool MaskFull(M const &mask);
template <typename M> bool MaskEmpty(M const &mask);

template <typename T>
void MaskedAssign(T &dst, const Mask<T> &mask, const T &src);

template <typename T>
T Blend(const Mask<T> &mask, const T &src1, const T &src2);

} // namespace vecCore

Listing 1: VecCore API

3. Mandelbrot Set with VecCore

Figure 1. Mandelbrot Set

A simple example that can be used to demonstrate how an
algorithm changes when implemented using the VecCore API
is the Mandelbrot set, shown in Figure 1 as calculated by
our code. The Mandelbrot set can be obtained by repeatedly
computing the function f(z) = z2 + c starting with z = 0
for various values of c in the complex plane. The final color
depends on how many iterations of f(z) are necessary for
the point to leave the circle |z| < 2. Listings 2 and 3 show
the scalar and vectorized implementations, respectively. The
vectorized version works on several points at a time. Both
algorithms are single-threaded for simplicity.
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Figure 2. Illustration of VecCore API operations

template<typename T>
void mandelbrot(T xmin, T xmax, size_t nx,

T ymin, T ymax, size_t ny,
size_t max_iter, unsigned char *image)

{
T dx = (xmax - xmin) / T(nx);
T dy = (ymax - ymin) / T(ny);

for (size_t i = 0; i < nx; ++i) {
for (size_t j = 0; j < ny; ++j) {

size_t k = 0;
T x = xmin + T(i) * dx, cr = x, zr = x;
T y = ymin + T(j) * dy, ci = y, zi = y;

do {
x = zr*zr - zi*zi + cr;
y = 2.0 * zr*zi + ci;
zr = x;
zi = y;

} while (++k < max_iter && (zr*zr+zi*zi < 4.0));

image[ny*i+j] = k;
}

}
}

Listing 2: Scalar implementation

template<typename T>
void mandelbrot_v(Scalar<T> xmin, Scalar<T> xmax, size_t nx,

Scalar<T> ymin, Scalar<T> ymax, size_t ny,
Scalar<Index<T>> max_iter,
unsigned char *image)

{
T iota;
for (size_t i = 0; i < VectorSize<T>(); ++i)

Set<T>(iota, i, i);

T dx = T(xmax - xmin) / T(nx);
T dy = T(ymax - ymin) / T(ny), dyv = iota * dy;

for (size_t i = 0; i < nx; ++i) {
for (size_t j = 0; j < ny; j += VectorSize<T>()) {

Scalar<Index<T>> k{0};
T x = xmin + T(i) * dx, cr = x, zr = x;
T y = ymin + T(j) * dy + dyv, ci = y, zi = y;

Index<T> kv{0};
Mask<T> m{true};

do {
x = zr*zr - zi*zi + cr;
y = T(2.0) * zr*zi + ci;
MaskedAssign<T>(zr, m, x);
MaskedAssign<T>(zi, m, y);
MaskedAssign<Index<T>>(kv, m, ++k);
m = zr*zr + zi*zi < T(4.0);

} while (k < max_iter && !MaskEmpty(m));

for (size_t k = 0; k < VectorSize<T>(); ++k)
image[ny*i+j+k] = (unsigned char) Get(kv, k);

}
}

}

Listing 3: VecCore implementation
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The two implementations are quite similar to each other, the main differences can be seen
inside the innermost do/while loop, that in the vectorized implementation must account for
the differences when treating several points at the same time. The vectorized implementation
requires using a mask to assign only to the right indices, and checking for termination becomes
more complex due to that as well, since care must be taken to not return from the inner loop
until all points in the SIMD vector have been properly computed.

Intel Core i7 6700 Intel Xeon Phi 7210

Runtime (ms) GCC-7.2 Clang-5.0 ICC-18.0 GCC-7.2 ICC-18.0

Single Scalar 550 549 677 3415 3609

Precision Scalar Backend 570 569 677 3353 3510

Vc 1.3.3 110 110 126 1064 1160

UME::SIMD 0.8.1 117 117 131 – 543

Double Scalar Algorithm 548 548 672 3409 3602

Precision Scalar Backend 571 571 674 3348 3502

Vc 1.3.3 267 267 257 2101 2087

UME::SIMD 0.8.1 421 421 422 – 846

Speedup vs Scalar

Single Scalar Backend 0.96 0.96 1.00 1.02 1.03

Precision Vc 1.3.3 5.00 4.99 5.37 3.21 3.11

UME::SIMD 0.8.1 4.70 4.69 5.17 – 6.65

Double Scalar Backend 0.96 0.96 0.99 1.02 1.03

Precision Vc 1.3.3 2.05 2.05 2.61 1.72 1.73

UME::SIMD 0.8.1 1.30 1.30 1.59 – 4.25

Table 1. Runtime in milliseconds of Mandelbrot set example for various configurations.

Runtime and speedups are shown in Table 1. It is important to note the difference in frequency
between the Core i7 (3.4 GHz) and the Xeon Phi (1.3 GHz), hence the difference in absolute
times. Moreover, performance comparisons using Julia sets (similar to Mandelbrot, but fixing c
and varying z) show that the speedup strongly depends on branch divergence—that is, how many
times the vectorized loop can return early. Complex regions of the fractal decrease the maximum
speedup that can be obtained with vectorization. Therefore, these results should be used only
as a relative measurement of performance between backends, and not as a measurement of the
overall vectorization efficiency.

4. Electromagnetic Physics Models
Collision events at the LHC frequently produce energetic photons and electrons that lead to
electromagnetic particle showers containing a large number of particles. Since particles generated
in these showers constitute the vast majority of particles generated in a collision event, the
simulation of electromagnetic processes is computationally expensive. Therefore, these processes
are the natural first candidates for vectorization.

In the GeantV project [1, 2], VecCore has been used in the implementation of vectorized
versions of electromagnetic physics models. Figure 3 shows the vectorization speedups for each
model on an Intel Xeon Phi (Knights Corner) for the main electromagnetic processes. For 64
or more tracks, the speedup is between 5x and 6.5x in double precision, when the maximum
speedup is 8x. Considering that these models rely on gather/scatter operations that are not
so fast compared with other SIMD operations such as arithmerics, masking, etc, this result
is very promising. Nevertheless, these speedups are expected to increase once a vectorized
pseudo-random number generator is implemented in the framework.
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Figure 3. Vectorization speedup of electromagnetic models on Intel Xeon Phi

5. Geometry Algorithms
VecGeom[7, 8], the geometry library used in GeantV [1, 2, 9] and recent versions of
Geant4 [10, 11, 12], has introduced a vectorized multi-particle API based on VecCore to
perform ray casting, distance calculations, and navigation in sets of particles within detector
geometries. Performance gains on Intel Knights Landing for VecGeom shapes compared to
previous implementations are shown in Figure 4. Since Vc does not support KNL, the scalar
backend has been used (i.e. speedup comes from compiler auto-vectorization only). As expected,
in this case the UME::SIMD backend outperforms Vc by a significant margin.
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Figure 4. Vectorization speedups of selected shapes on Intel Knights Landing (KNL)
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6. Conclusions
VecCore introduces a new unified abstraction layer on top of existing SIMD libraries that lets
users write generic vectorized code that can be used with different instruction sets and hardware
architectures. It also allows the user to change libraries to take advantage of the strengths of
each library, or avoid drawbacks like lack of support for some architectures (e.g. KNL, ARM, or
PowerPC), since VecCore has a simple scalar backend that works across architectures. If new
backends are added, users of VecCore can take advantage of them without needing to change
their code, by only changing the backend configuration. These features make VecCore a useful
library for writing SIMD-enabled algorithms that are expected to perform well on a variety of
architectures.
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