
Journal of Physics: Conference
Series

PAPER • OPEN ACCESS

Designing and prototyping the control system for
the Cherenkov Telescope Array
To cite this article: I Oya et al 2018 J. Phys.: Conf. Ser. 1085 032045

View the article online for updates and enhancements.

You may also like
Analogue sum ASIC for L1 trigger decision
in Cherenkov Telescope cameras
J.A. Barrio, O. Blanch, J. Boix et al.

-

COLIBRI: partial camera readout and
sliding trigger for the Cherenkov
Telescope Array CTA
C L Naumann, L A Tejedor and G
Martínez

-

Large scale characterization and
calibration strategy of a SiPM-based
camera for gamma-ray astronomy
C. Alispach, J. Borkowski, F.R. Cadoux et
al.

-

This content was downloaded from IP address 3.139.97.157 on 28/04/2024 at 20:54

https://doi.org/10.1088/1742-6596/1085/3/032045
https://iopscience.iop.org/article/10.1088/1748-0221/10/02/C02016
https://iopscience.iop.org/article/10.1088/1748-0221/10/02/C02016
https://iopscience.iop.org/article/10.1088/1748-0221/8/06/P06011
https://iopscience.iop.org/article/10.1088/1748-0221/8/06/P06011
https://iopscience.iop.org/article/10.1088/1748-0221/8/06/P06011
https://iopscience.iop.org/article/10.1088/1748-0221/15/11/P11010
https://iopscience.iop.org/article/10.1088/1748-0221/15/11/P11010
https://iopscience.iop.org/article/10.1088/1748-0221/15/11/P11010
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjssJ9yTqF8u9bbrhBxlxZpSu8YmkQL7pRNgERz5BCUt88mUeDzcvkv3ZRj_ypO6j6tFj80S2Ds3eg8ZjrtQjGQwI4quDow2ezmowHEfm7iu0iOHsNFxbdpVx7sbf5Tz9uhV9Su7w2aBhPK9Qnmh7gKASfP1MmrQFyI0jC2086cGlSDgxu01BoHxbd1f6q0abYZXY17PvXVBm4O4YbblVYPa3jiqoO8v7Lr0LPtXl3T2OtzL2SxPIbdY5LtqXQEYleUXNf-FB2pQOk3raNpm28SkCQkrNUIYJb8SnLluem090PHYIdqKmQHqh27yZJjvWcE_CuF3tpIptIDEnh2X1ORCKtmd9YQ&sig=Cg0ArKJSzLuOfmpPkaYq&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 032045 doi :10.1088/1742-6596/1085/3/032045

Designing and prototyping the control system for the

Cherenkov Telescope Array

I Oya1, M Füßling1, P O Antonino2, M Araya3, J Borkowski4,
A Bulgarelli5, J Castroviejo6, J Colomé6, V Conforti5,
A Garcia-Piquer6, J Guárdia6, L Hagge7, E Lyard8, A Morgenstern2,
M Mayer9, D Melkumyan1, T Murach1, L Pizarro3, I Sadeh1,
T Schmidt1, U Schwanke9, G Spengler9, J Schwarz10, G Tosti11,
R Walter8 and P Wegner1 for the CTA Consortium12

1 DESY, Zeuthen, Germany
2 Fraunhofer IESE, Kaiserslautern, Germany
3 UTFSM, Valparáıso, Chile
4 CAMK, Torun, Poland
5 I.A.S.F. di Bologna, Italy
6 IEEC-CSIC, Spain
7 DESY, Hamburg, Germany
8 University of Geneva - Departement d’Astronomie, Switzerland
9 Humboldt-Universitaet zu Berlin, Germany
10 INAF - Osservatorio Astronomico di Brera, Italy
11 University of Perugia, Italy
12 Full consortium author list at http://cta-observatory.org

E-mail: igor.oya.vallejo@desy.de

Abstract. The Cherenkov Telescope Array (CTA) is the next-generation atmospheric
Cherenkov gamma-ray observatory. The Observation Execution System (OES) team within
the CTA project is designing and prototyping the software to execute the observations and
to handle the acquisition of scientific data at GB/s rates. In this contribution we show the
OES system as it is being designed using the Unified Modeling Language (UML) and Systems
Modeling (SysML) formalisms. In addition, we present the status of the associated prototyping
activities.

1. Introduction
The Cherenkov Telescope Array (CTA) [1] will consist of two facilities, one in the southern (Cerro
Armazones Chile) and the other in the northern hemisphere (La Palma, Spain). The two sites
will contain dozens of telescopes of different sizes, constituting one of the largest astronomical
installations under development.

CTA will implement simultaneous automatic operation of multiple sub-arrays of telescopes.
It will be capable of quick re-scheduling of observations (within a few seconds), in order to
allow observations of elusive transient events. The operation, control, and monitoring of the
distributed multi-telescope CTA arrays is inherently complex. As such, they pose new challenges
in scientific instrumentation control systems and in particular in the context of ground-based

http://creativecommons.org/licenses/by/3.0

2

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 032045 doi :10.1088/1742-6596/1085/3/032045

gamma-ray astronomy. The system providing the functionality to execute the observations and
to handle the acquisition of scientific data in CTA is the Observation Execution System (OES).

In the the following we will first introduce the model-driven methodology adopted to design
the OES system (Section 2), then present a brief description of the main sub-systems of OES and
describe the status of the associated prototypes (Section 3), and finally offer some concluding
remarks (Section 4).

2. Model Driven System Design
The OES architecture is designed using the Software Platform Embedded System (SPES)
methodology [2] implemented via the Unified Modeling Language (UML) and Systems Modeling
(SysML) formalisms.

The architecture is composed of two type of elements: architecture drivers and architecture
design. The architecture drivers specify functional and quality requirements for the system. The
architecture design is expressed by different viewpoints. Figure 1 illustrates via an example the
main viewpoints we use in the OES architecture, which are the following:

• In the context viewpoint the OES system is considered to be a black-box interacting with a
set of external systems and stakeholders (human actors). The interaction is performed via
the exchange of information through the flow of functional data; in the example in Fig. 1
we show a system and a stakeholder exchanging information with the OES system.

• In the functional viewpoint we derive a network of functions that exchange data with the
external entities outside the system as well as between them. The functions are grouped
hierarchically, down to the elementary elements named behavior functions.

• In the logical viewpoint, we create a hierarchical decomposition of the systems, the higher
level elements corresponding to the sub-systems contained within the OES (see also Fig. 2).
These components are decomposed in a hierarchy of lower level components, down to
the elementary implementation units (behavior components), that realize the functions
previously defined in the functional viewpoint. This viewpoint contains the provided and
required interfaces of the components and the concrete (logical) data exchanged. In addition
to the UML component diagrams which show the static description of the OES system, this
viewpoint uses UML activity and sequence diagrams to specify the behavior of the system.

• We describe the deployment specification of the logical components in the technical
viewpoint (not shown in the example in Fig. 1).

The application of the architecture model serves the following purposes in the teamwork to
create the OES system:

• Specification of the architecture design, including interfaces, behavior and data model.

• Relationships (traces) from drivers (functional and quality requirements) to model elements,
ensuring consistency.

• Definition of specifications of software to be created by the development teams, which can
be either within the CTA organization or external software development companies.

• Vision sharing and scoping (including interface identification and definition), two important
ingredients for collaborative software engineering.

• A foundation to implement the project management to build the OES system. The work
package product breakdown structure (PBS) and the work breakdown structure (WBS) can
be built based on the functional and logical viewpoints. The model can help to identify
risks, internal and external dependencies, and to plan staging scenarios in the construction
of the OES software.

3

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 032045 doi :10.1088/1742-6596/1085/3/032045

Context	 Func+onal	 Logical	

Figure 1. Example to illustrate the main viewpoints of the OES architecture. The arrows
exemplify the process of going from an abstract description to a more concrete level of detail,
from the Context (left) to the Functional (middle) and then to the Logical viewpoints (right).
The diagram utilizes the SysML and UML notation. See text for details.

The OES will be implemented as a distributed software application using the ALMA Common
Software (ACS) CORBA-based framework [3, 4]. One instance of the OES will be deployed in
each CTA site. Figure 2 shows a diagram indicating the main components of the OES system,
described in the next section.

3. OES Subsystems and their Prototypes
The OES design presented here takes as input many concepts from the Array Control and
Data Acquisition (ACTL) idea discussed within the CTA Consortium [5, 6]. We have produced
advanced prototypes for most OES sub-systems during the past few years, implemented in the
ACS framework. The scope of these sub-systems, together with the status of the prototypes is
briefly summarized below:

• The Short Term and ToO Scheduler is responsible for deciding, at real time, how to
group and use the telescopes of a CTA installation to perform nightly operations, based
on a mid-term schedule supplied to it before the beginning of the night operations. This
sub-system is also responsible for reacting at real time to changing environmental conditions
and external or internal scientific alerts (scientific alerts are also known as ToOs; target of
opportunity alerts). The scheduler prototype is implemented in C++, and uses advanced
artificial intelligence algorithms (meta-heuristic optimization) [10, 11].

• The Manager and Central Control is responsible for the execution of the scheduling
blocks provided by the scheduler by sending corresponding commands to the telescopes,
while supervising the ongoing operations, bookkeeping the allocation of telescopes to sub-
arrays, and overseeing the Data Handling System. A prototype of this sub-systems exists,
implemented in Java and using a supervision tree architecture. The prototype includes
a dedicated Python environment to run operations scripts. The latter are the high level
procedures implementing the actions to be performed by the telescopes in a sub-array during
a particular operation.

• The Data Handling System is responsible for getting the stream of data from the
Cherenkov cameras of the CTA telescopes and handling these data, which arrive at a rate
of the order of GB/s, according to the sub-array they participate in. As such, it contains
the central trigger, data acquisition, local storage, and a pipeline to provide scientific alerts

4

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 032045 doi :10.1088/1742-6596/1085/3/032045

Figure 2. Logical view of OES, representing the main components of the system. Only the
highest level components, and the most relevant data elements and interfaces are shown. The
diagram uses the UML component notation, and the basic entities are the software components,
depicted as pink boxes. The dashed lines show the flow of data elements and the arrows the
direction and sign of the flow.

at real time. More details on the existing prototype of the data acquisition, implemented
in C/C++, is provided in [7]. The concept and design ideas of the science alerts pipeline is
presented in [8].

• The Operator Interface offers to the operator located in the control room of the CTA
installation a comprehensive view of the status of the observations and the hardware
and means to interact with the system. Our prototype [9] is based on web technologies,
with the front-end implemented in JavaScript and the back-end in Python (Pyramid Web
Framework). Figure 3 shows a few examples of existing prototype panels.

• The Monitoring System is responsible for monitoring data items from the telescope and
other devices deployed at the CTA sites, and making those data available for the operator
interface, for quick-look quality checking, as well as for detailed inspection. In our estimates,
we assume a total of 150,000 data items to be monitored at a rate of about 1 Hz. Based
on the assumed number of data items, we are prototyping solutions that are using redis,
MongoDB and Cassandra nosql data base technologies.

• The Reporting and Diagnosis sub-system is responsible for gathering the relevant data
from the other OES subsystems in order to produce status and quality reports during the
night for the Operator Interface and for other systems outside the OES. This system has
not yet been prototyped.

A preliminary integration of the OES sub-system prototypes mentioned above is underway,
starting with integration of the Central Control with the Short Term Scheduler and the Data

5

1234567890 ‘’“”

ACAT2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1085 (2018) 032045 doi :10.1088/1742-6596/1085/3/032045

Figure 3. Two panels from the operator User Interface prototype. The array zoomer (left
panel) shows the status of array elements at different levels of detail by implementing multi-
scale navigation with semantic zooming concepts (see [9] for details). The figure in the right
panel shows the position of telescopes (blue/red circles) on the sky in polar coordinates.

Handling System.

4. Conclusions
We have set up a model-driven approach to design the OES software. The system has been
decomposed in several sub-systems, most of them already having associated prototypes. The
pre-integration of the sub-system prototypes is the first step in the construction phase of the
OES system. Our experience during the last couple of years is that the usage of the formal
architecture approach presented here improves the communication of expectations and interface
definitions between the different development teams, which are physically distributed around
the world. Following this, we conclude that such model-driven approach will be instrumental
for the success of the OES implementation in the future.

Acknowledgments
The authors acknowledge the work of the ACTL team members of the CTA consortium during
the last years, which was instrumental for the definition of the OES system. We gratefully
acknowledge financial support from the agencies and organizations listed here: http://www.cta-
observatory.org/consortium acknowledgments

References
[1] Acharya B, Actis M, Aghajani T, et al. 2013 Astroparticle Physics 43, 3
[2] Pohl K, Hönninger H, Achatz R, Broy M (Eds.) 2012 Model-Based Engineering of Embedded Systems: The

SPES 2020 Methodology (Berlin: Springer)
[3] Chiozzi G, Jeram B, Sommer H, et al. 2014 Proc. SPIE 9149, 91490H
[4] Schwarz J, Sommer H and Farris A 2004 ASP Conference Series 314, 634
[5] Oya I, Füßling M, Antonino PO, et al 2016 Proc. SPIE 9913, 991303
[6] Füßling M, Oya I, Balzer A, et al 2016 Proc. SPIE 9913 99133C
[7] Lyard E, Walter R 2017 End-to-end data acquisition pipeline for CTA, Proc. ICRC (Preprint arXiv:1709.04203)
[8] Bulgarelli A, Fioretti V, Zoli A, et al 2014 Proc. SPIE 9145 91452X
[9] Sadeh I, Oya I, Schwarz J and Pietriga E 2016 Proc. SPIE 9913, 99130X
[10] Colomé J, Colomer P, Campreciós J, et al 2012, Proc. SPIE 5496, 205-218
[11] Garcia-Piquer A, Morales JC, Ribas I, et al 2017 Astronomy & Astropysics 604, A87.

