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Abstract. We sketch how the R∗-operation can be used to compute the poles of Feynman
diagrams. Next, we identify computational difficulties when performing five-loop calculations.
We provide four solutions that drastically reduce the number of generated terms.

1. Introduction
Many physically interesting quantities can be computed from just the pole parts of Feynman
diagrams. For example, anomalous dimensions (such as the beta function), splitting functions,
and decay rates. Often, it is much easier to compute the pole parts of diagrams than the finite
part.

In this work we sketch the R∗-operation [1, 2, 3], which is able to compute the pole parts of
L-loop diagrams by a computation of at most L − 1-loop diagrams. Using a high-performance
implementation of the R∗-operation combined with the Forcer program [4, 5, 6], we are able
to compute the poles of five-loop massless propagator diagrams. Our code is all written in
Form [7, 8, 9].

Performing efficient computations of five-loop diagrams is hard, since the Feynman rules
create many terms. To alleviate these issues, we describe four methods to reduce the number
of terms: (1) removal of propgator insertions, (2) delaying of Feynman rule substitution, (3)
canonicalization of Feynman diagrams, and (4) efficient tensor reduction. These optimizations
are not specific to the R∗-method.

Using these optimizations, we have computed the five-loop beta function for Yang-Mills theory
with fermions in six days on one 32-core machine [10]. We have also computed the R-ratio, the
Higgs decay to quarks, and to gluons [11].

The outline of this paper is as follows. In section 2 we briefly describe the R∗-operation. In
section 3 we describe the four optimizations. Finally, we present the conclusion in section 4.

2. The R∗-operation
The R∗-operation can be used to compute the poles of Feynman diagrams [12, 13]. Recently, it
has been extended to Feynman diagrams with arbitrary numerator structure [3]. In this section
we briefly sketch how the R∗-operation works, focusing on UV-counterterms.

http://creativecommons.org/licenses/by/3.0
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The basic object of the R∗-operation is the UV counterterm operation Δ acting on a graph
G, which is defined as the poles of G in the limit of all loop momenta going to infinity with all
contributions from subdivergences subtracted.

Additionally, we define the pole operator K on a Laurent series in ε as

K

∞∑
i=−∞

ciε
i =

−1∑
i=−∞

ciε
i . (1)

Then the R∗ operation for some simple examples yields:
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In general, all sets of non-overlapping divergent subdiagrams have to be considered:
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In the latter case, the contribution from two counterterms gets a minus sign, to prevent double
counting.

For logarithmically divergent diagrams, Δ does not depend on external momenta or masses.
Consequently, we can infrared rearrange (IRR) [14]:

Δ
( )

= Δ
( )

= Δ

( )
. (5)

Using IRR and the definition of Δ, we can express the UV-counterterm of G in terms of
simpler diagrams:

Δ(G)
IRR
= Δ(G′)︸ ︷︷ ︸

Simpler than G

= K(G′)− subdivergences(G′)︸ ︷︷ ︸
Lower-loop diagrams

Using this setup, we can rewrite all L-loop input diagrams to L−1 scalar massless propagator
integrals. For the applications at five loops, all those integrals can be computed using the Forcer
program [4, 5].

3. Optimisations
Performing computations at five loops introduces at least four new bottlenecks compared to four
loops: (1) the number of diagrams and their complexity grow exponentially, (2) the substitution
of the Feynman rules is slow and creates millions of terms, (3) the number of counterterms
grows exponentially, and (4) tensors of rank 10 have to be reduced, which involves solving large
systems.

In this section we address these issues by presenting four optimisations, namely improved
treatment of propagator insertions in section 3.1, delayed Feynman rule substitution in
section 3.2, a canonical form algorithm for Feynman diagrams in section 3.3, and an efficient
tensor reduction algorithm in section 3.4.
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3.1. Treatment of propagator insertions
Many of the higher-loop corrections are self-energies of propagators in the diagram. Due to the
local nature of the Feynman rules, these self-energies only depend on their external momentum
(there are no contractions with other parts of the larger diagram), so they can be ‘factorised’
out:

+ + =

(
+ +

)
× =

Σ1PR
2 ,

(6)

where the L-loop self-energy is replaced by (p2)−εL in the larger diagram (marked by L crosses).
In a sense, the subdiagram is integrated out. The resulting simpler topology is multiplied by the
one-particle-reducible L-loop self-energy. Since the L-loop subdiagram is of lower order, these
quantities have already been computed and can easily be tabulated to prevent recomputations.
For example, a five-loop diagram may contain the expensive 4-loop gluon propagator as a
subdiagram.

For the R∗-operation, this representation has an issue: the non-integer power hides UV-
divergent subdiagrams, which should be subtracted. However, since the exact contents of the
(p2)−εL is factorised out, we may replace it with any L-loop subdiagram. Therefore we choose
the simplest configuration: L scalar one-loop bubbles side by side.

Thus, for the R∗-operation we can remove propagator insertions by using the following
relation:

L

=

L

⎛
⎝

⎞
⎠L

×
1 L

. (7)

3.2. Delayed Feynman rule substitution
Substituting the Feynman rules creates many terms. For example, the following fully gluonic
five-loop graph creates 12 029 521 scalar integrals in the Feynman gauge:

. (8)

The source of the blow-up is the Feynman rule for the triple gluon vertex, which can be written
in the following way:

v3g(p
μ,a
1 , pν,b2 , pρ,c3 ) = −ifabc [(p1 − p2)

ρgμν + (2p2 + p1)
μgνρ + (−2p1 − p2)

νgμρ] . (9)
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Thus, for every vertex, six terms are created, of which some will evaluate to the same expression
due to symmetries. For all these terms, expensive operations such as Taylor expansions and
divergent subgraph recognitions have to be performed. However, these operations only depend
on the momentum powers and are invariant under the way the momenta contract. So, we
rewrite the triple gluon vertex in a way that exposes the momenta, but keeps all the contractions
unsubstituted:

v3g(p
μ,a
1 , pν,b2 , pρ,c3 ) = −ifabcpσ1 t3(σ, ν, ρ, μ) + ifabcpσ2 t3(σ, μ, ρ, ν) , (10)

where
t3(μ, ν, ρ, σ) = gμρgνσ + gμσgνρ − 2gμνgρσ . (11)

After rewriting v3g in terms of t3, there are only 210 = 1024 terms for the Feynman diagram in
eq. (8). We can keep our input in this compactified notation for as long as the actual contractions
are not important, which is right until the tensor reduction.

We define the operation ◦ that applies the remaining Feynman rules to all components of the
R∗-operation. For example:

t3(μ, ν, ρ, σ) ◦Δ
(

μν

)
ρ

σ
= 2Δ

(
μν

)
μ

ν
− 2Δ

( )
ρ

ρ
. (12)

We stress that for this particular case contraction is necessary.
Similar rules can be devised for the other vertices and for the trace of gamma matrices. At

five loops, the substitution of t3 and similar structures is an expensive part of the calculation,
since the number of generated terms is high.

3.3. Canonical forms for Feynman diagrams
The R∗-operation applied to five-loop diagrams will create many counterterms. In order to
reduce computation time, it is important to compute the counterterms of a specific graph
only once. In turn, this requires an efficient way to detect if two graphs are equal. One
straightforward option is to keep a list of all the graphs that have already been processed
and test for isomorphisms on every element of the list until one is found. If no match is found,
the current graph can be added to the list. The two downsides of this method are that (1)
an isomorphism test can be rather slow at five loops and (2) that the list of topologies grows
rapidly.

A better alternative is to construct a canonical form of a graph. A canonical form is an
isomorphism of the graph that is designated as the smallest by some yet to be defined measure.
To test for equality, one can simply compare the canonical forms. Since isomorphy is first and
foremost a property of the vertices, we give each vertex a label from 1 to n. For simplicity, let
us consider a graph that has no dot products and only has edges with power 1.

We convert our graph to an edge representation:

1 3

2
0 4 = e(0, 1)e(1, 2)e(2, 3)e(2, 3)e(1, 3)e(3, 4) . (13)

Here, e(n1, n2) is the edge function, in which we place the smallest vertex index as the first
argument. The edge list is a lexicographically sorted list of edge functions, as is shown in
eq. (13). Now we define the smallest isomorphism of a graph as the vertex labelling for which
the edge list is lexicographically smallest.1

1 In our program, we use the internal (deterministic) sorting order of Form to determine the smallest isomorphism
instead.
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We can easily extend the graph notation to a graph where propagators can have different
powers, by introducing a third argument to the edge function e:

1 3

2
0 4 = e(0, 1, 1)e(1, 2, 2)e(2, 3, 1)e(2, 3, 2)e(1, 3, 1)e(3, 4, 1) , (14)

where we again make sure that the first two arguments of e(n1, n2, . . .) are sorted. To add
support for dot products and tensors, we extend the edge function even further:

μ

μ

1 3

2
0 4 = e(0, 1, 1, μ)e(1, 2, 2)e(2, 3, 1)e(2, 3, 2, μ)e(1, 3, 1)e(3, 4, 1) . (15)

We define the canonical signs of the momenta such that they always flow from the smallest
vertex label to the highest. If a transformation changes the order, we flip the sign if the number
of vectors in the momentum is odd:

e(2, 1, n, μ1, . . . , μk) = (−1)ke(1, 2, n, μ1, . . . , μk) . (16)

Finally, the momentum label pi of each edge is uniquely defined by the position i of the edge in
the edge list.

Now that most properties of the Feynman integral are captured in the extended edge list and
we have defined which edge list is smallest, we use McKay’s canonicalisation algorithm [15] to
efficiently rewrite the complete Feynman integral to canonical form. A simplified version of this
algorithm is implemented in Form code.

3.4. Efficient tensor reduction
It can be shown that the tensor reduction of ultraviolet and infrared subtraction terms, required
for the R∗-operation, is equivalent to the tensor reduction of tensor vacuum bubble integrals.
In general tensor vacuum integrals can be reduced to linear combinations of products of metric
tensors gμν whose coefficients are scalar vacuum integrals. Specifically a rank r tensor, Tμ1... μr ,
is written as a linear combination of n = r!/2(r/2)/(r/2)! combinations of (r/2) metric tensors
with coefficients cσ, i.e.,

Tμ1... μr =
∑

σ∈ 2Sr

cσ T
μ1...μr
σ , Tμ1... μr

σ = gμσ(1)μσ(2) . . . gμσ(r−1)μσ(r) . (17)

Here we define 2Sr as the group of permutations which do not leave the tensor Tμ1... μr
σ invariant.

The coefficients cσ can be obtained by acting onto the tensor Tμ1... μr with certain projectors
Pμ1...μr
σ , such that

cσ = P μ1... μr
σ Tμ1... μr . (18)

From this it follows that the orthogonality relation,

P μ1... μr
σ Tτ, μ1... μr = δστ , (19)

must hold, where δ is the Kronecker-delta. Since the projector P μ1... μr
σ of each tensor can also

be written in terms of a linear combination of products of metric tensors, inverting an n × n
matrix determines all the projectors. However, there are two issues. The first is that the size of
the matrix grows rather rapidly as r increases. Instead of solving an n × n linear system, the
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symmetry group of the metric tensors can be utilised to reduce the size of the system. From
eq. (19) it follows that the projector Pσ is in the same symmetry group (the group of permutations
which leave it invariant) as Tσ. For example, given a permutation σ1 = (123...(r − 1)r),

Tμ1... μr
σ1

= gμ1μ2gμ3μ4 . . . gμr−1μr . (20)

The corresponding projector Pμ1... μr
σ1 must be symmetric under interchanges of indices such as

μ1 ↔ μ2, (μ1, μ2) ↔ (μ3, μ4) and so on. Grouping the metric tensors by the symmetry leads
to the fact that Pσ is actually written in a linear combination of a small number of m tensors
instead of n (m ≤ n),

Pμ1... μr
σ =

m∑
k=1

bk
∑
τ∈Aσ

m

Tμ1... μr
τ . (21)

The set of groups {Aσ
k |k = 1..m} must therefore each be closed under the permutations which

leaves Tσ invariant and at the same time their union must cover once the group 2Sn. Contracting
Pσ with a representative in each group gives an m ×m matrix which can be inverted to yield
the coefficients bk. The number of unknowns m is m = 5 for r = 8 and m = 22 for r = 16,
whereas we have n = 105 for r = 8 and n = 2027025 for r = 16. The comparison of these
numbers illustrates that the exploitation of the symmetry of the projectors makes it possible to
find the tensor reduction even for very large values of r, which could never have been obtained
by solving the n× n matrix.

The second issue with tensors of high rank is the large number of intermediate terms that are
created. Even though the system for the projector can be solved efficiently, O(n2) terms will be
created, of which some will merge due to symmetry. Let us consider rank 6, with 15 terms:

c1g
μ1μ2gμ3μ4gμ5μ6 + c2g

μ1μ3gμ2μ4gμ5μ6 + . . . . (22)

In most practical situations there is symmetry, both on the inside of the object that will be
projected as on the outside. For example

A(pμ1
1 pμ2

1 pμ3
1 pμ4

1 pμ5
2 pμ6

2 )pμ1
3 pμ2

3 pμ3
4 pμ4

4 pμ5
4 pμ6

4 (23)

is symmetric in exchanges of μ1, . . . , μ4 and μ5, μ6 inside A, and is symmetric in μ1, μ2 and
μ3, . . . , μ6 outside A. The symmetry inside the object A will enforce that coefficient c1 and c2
(and others) will actually be the same. The symmetry on the outside will cause terms to merge.
In the end, we could have used the symmetrised variant of eq. (22) instead:

c1 · (gμ1μ2gμ3μ4gμ5μ6 + 2gμ1μ3gμ2μ4gμ5μ6) + c3(2g
μ1μ2gμ3μ5gμ4μ6 + 10gμ1μ5gμ2μ6gμ3μ4). (24)

We see that only two coefficients have to be computed instead of 15 and that there are only 4
terms in the output instead of 15. The challenge is to prevent these terms from being created
in the first place by exploiting symmetry, instead of starting from eq. (22). We make use
of the optimised Form command dd , which creates the tensor structure Tμ1,...,μr without
generating duplicates. If we evaluate dd (p1,p1,p1,p1,p2,p2) and strip the coefficient we
get p1.p1^2*p2.p2+p1.p1*p1.p2^2. These two terms represent the structure outside of c1 and
c3 in (24). For each of these two terms, we solve for the coefficient. Next, we recreate the metric
structures that would give this specific contraction.

A term generated by dd consists of two different factors: (p · p)a and (p1 · p2)a. For (p · p)a,
we collect all possible indices involved with p. For eq. (23), this would be μ1, . . . , μ4. Then we
select all possible ways to get 2a elements from that list with distrib . Next, we use dd on
those indices. Thus, for p1 ·p1 in the example we would get gμ1μ2 +gμ1μ3 +gμ2μ3 . For cases such
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as (p1 · p2)a, we select a from the list of indices associated to p1 and a from the list of p2. Then
we permute over the list of p2. Using this algorithm, one can generate all possible contractions
from the result without generating duplicates. To apply the outside symmetry, one can easily
fill in the outside momenta associated to the indices instead of the indices themselves. distrib
and dd will take the symmetry into account automatically.

4. Conclusion
We have sketched how the R∗-operation can be used to compute the poles of Feynman
diagrams. Additionally, we have identified computational difficulties when performing five-loop
calculations. We provide four solutions that reduce the number of generated terms.

Using these methods, we have computed the five-loop beta function for Yang-Mills theory
with fermions in six days on one 32-core machine [10]. We have also computed the R-ratio, the
Higgs decay to quarks, and to gluons [11].
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