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Abstract. Simulations in high energy physics (HEP) often require the numerical solution
of ordinary differential equations (ODE) to determine the trajectories of charged particles
in a magnetic field when particles move throughout detector volumes. Each crossing of
a volume interrupts the underlying numerical method that solves the equations of motion,
triggering iterative algorithms to estimate the intersection point within a given accuracy. The
computational cost of this procedure can grow significantly depending on the application at
hand. Quantized State System (QSS) is a recent family of discrete-event driven numerical
methods exhibiting attractive features for this type of problems, such as native dense output
(sequences of polynomial segments updated only by accuracy-driven events) and lightweight
detection and handling of volume crossings. In this work we present GQLink, a proof-of-
concept integration of QSS with the Geant4 simulation toolkit which stands as an interface
for co-simulation that orchestrates robustly and transparently the interaction between the QSS
simulation engine and aspects such as geometry definition and physics processes controlled by
Geant4. We validate the accuracy and study the performance of the method in simple geometries
(subject to intense volume crossing activity) and then in a realistic HEP application using a full
CMS detector configuration.

1. Introduction
High energy physics (HEP) particle simulations deal intensively with the tracking of particles
affected by physics processes in complex detector geometries (adjacent 3D volumes of different
shapes and materials). The accuracy and efficiency of the tracking algorithms are of central
interest to optimize the use of available computing resources. Every time a charged particle
crosses a volume boundary, the numerical method that solves the underlying ordinary differential
equations (ODEs) [1] in a magnetic field needs to be interrupted. As this situation can happen
many times during the lifetime of a particle in a typical HEP setup, the underlying continuous
models describing particle trajectories must cope with frequent discontinuities. These spatial
discontinuities will seldom coincide with the start of a new step. Thus, custom iterative
algorithms are required to approximate the timestamp of the event time of each discontinuity in
an accurate way. When these events are very frequent, they can dominate the processing time
of the numerical method and considerably degrade its performance.

Contemporary HEP experiments are widely based on the Geant4 [2] simulation toolkit. It
uses classical numerical methods that rely on time discretization [3], in particular variations of
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the Runge-Kutta family of solvers [4]. The Quantized State System (QSS) methods [3, 5], on the
other hand, discretize the state variables instead of discretizing the time and solve ODEs using
discrete–event approximations of continuous models. A feature of QSS particularly relevant in
the context of HEP simulations is that these methods handle discontinuities very efficiently [6].
In QSS, the state variables follow piecewise polynomial trajectories. The detection of a volume
crossing is modeled by solving a zero-crossing function, which can be done efficiently using the
aforementioned polynomials (at least for some categories of the surface boundaries). Since each
new QSS step is, by definition, a discontinuity in the quantized variable –strictly speaking, a
discrete event– this task is naturally supported by the numerical method.

In previous works [7, 8] we verified the potential of QSS to offer speedups in HEP simulations,
in particular in scenarios with heavy volume crossing activity. Yet, our studies were limited to
compare Geant4 and QSS Solver [9], a standalone simulation toolkit that provides optimized
implementations of QSS methods. A salient limitation of this approach is that physics
processes were turned off for comparability purposes, restricting the comparisons to simple
setups conceived as baselines. In this work we enable the capability to evaluate performance in
realistic HEP applications by means of a proof-of-concept integration of QSS within Geant4.

This paper is organized as follows: Section 2 briefly introduces the QSS theory and the
Geant4 transportation chain and then summarizes our preliminary results on QSS suitability
for HEP simulations. Section 3 provides a high-level description of GQLink. Next, Section 4
discusses the verification of the method and presents a performance comparison between pure
Geant4 and GQLink in two different setups. Finally, Section 5 contains a summary, conclusions
and plans for the future.

2. Background
2.1. The Quantized State System (QSS) numerical integration methods
QSS are numerical methods that solve systems of ordinary differential equations (ODEs) in the
form of Eq. 1, where x(t) is the state vector and u(t) is the input vector representing independent
variables for which no derivatives are present in the system.

ẋ(t) = f(x(t),u(t)) (1) ẋ(t) = f(q(t),u(t)) (2)

Traditional ODE solvers (like the Runge-Kutta family) make use of time slicing : given the
current and past state and state derivative values, the solver estimates the next value of the state
xk+1 one “time step” Δt into the future, i.e., at tk+1 = tk +Δt. QSS solvers operate differently:
they make use of state space quantization. Rather than discretizing the time axis, they discretize
the state variable axis, evaluating the first time instant tk+1 in the future at which the state
variable differs from its current value by one “quantum level” ΔQ, i.e., when xk+1 = xk ±ΔQ.
The system described by Eq. 1 is thus approximated by the quantized system shown in Eq. 2,
where q(t) is the quantized state vector resulting from the quantization of the state variables
xi(t). In the first-order QSS method (QSS1) each qi(t) follows a piecewise constant trajectory
that is updated by a (hysteretic) quantization function when the difference between qi(t) and
xi(t) reaches the quantum ΔQi, a value derived from the precision demanded by the user.

In QSS1, q(t) follow piecewise constant trajectories, which implies that x(t) follow piecewise
linear trajectories. Higher-order QSS methods generalize this behavior: in QSSn, x(t) follow
piecewise n-th degree polynomial trajectories and q(t) follow piecewise (n − 1)-th degree
polynomial trajectories [5].

In the context of HEP applications, QSS exhibit several attractive features, such as inherent
asynchronicity (each state variable updates its value independently at self clocked time instants
dictated by its own dynamics and the accuracy ΔQ), dense trajectory output (at any given
time t0, QSS approximates x(t0) using the piecewise polynomial trajectories computed for the
interval in which t0 lies in) and efficient handling of frequent discontinuities (a discontinuity is
modeled by a zero-crossing function which is in turn defined in terms of the QSS polynomials).
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Regarding practical tools, QSS Solver [9] is an open-source standalone software that provides
optimized C implementations of different QSS methods as well as other traditional algorithms
(e.g., Dormand-Prince method). Equations are expressed in μ-Modelica [10], a subset of the
more general Modelica language [11].

2.2. Particle transport in Geant4
Geant4 traces particle trajectories in a magnetic field by means of the Runge-Kutta family of
numerical methods. Figure 1 illustrates how a charged particle q is transported along a step of
length h proposed by a physics process. In this context, the step computation involves a total
of 11 right-hand side ODE evaluations for the 4th-order Runge-Kutta.

{

cho
rd

Figure 1: A charged particle trajectory in a magnetic field ( �B) using the 4th-order Runge-Kutta method.

A comprehensive explanation of the stepping algorithm can be found in [7]. In particular,
we stress that the intersection point detection algorithm can be rather expensive, as it needs to
iterate back and forth until a candidate point satisfying the intersection accuracy constraints is
found. This suggests that methods such as QSS, which naturally provide a lightweight handling
of discontinuities, are good candidates for simulating HEP setups with frequent volume crossings.
Indeed, the preliminary results summarized in the next section support this hypothesis.

2.3. Preliminary results
In [7, 8] we studied the performance of QSS Solver in the context of a simplified HEP setup
consisting of a circular 2D motion of a charged particle under an uniform magnetic field. The
particle crosses equidistant parallel planes as shown in Figure 2a. We found configurations with
200 planes and a track length of 100 m where QSS Solver is 6x faster than Geant4 (Figure 2b)
with better accuracy, when the physics interactions are turned off.

3. Geant4 to QSS Link (GQLink): linking QSS libraries to Geant4
GQLink is a proof-of-concept mechanism to make QSS methods available within Geant4. It is
currently based on the Geant4 toolkit version 10.03.p01 and the QSS Solver toolkit version
3.0. Designed as an abstract, clean, single entry point interface to the QSS Solver family of
numerical integration methods, GQLink is virtually ready to support other integrators in the
future. This is depicted in Figure 3a. It must be noted that GQLink was not conceived as yet
another Geant4 stepper, although its main function is to replace the tasks typically performed
by steppers in Geant4. Being integrated into the Geant4 building process, GQLink provides
three new shared libraries: libqss, containing QSS core functionality, mostly derived from the
QSS Solver engine, libgqlink, which offers the interface API between Geant4 and QSS, and
libmodel, where the actual structure of the model to be simulated is defined (typically the
Lorentz equations of motion).
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(a) Experimental setup
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Figure 2: Preliminary comparison between Geant4 and QSS Solver

It is worth noting that currently boundary crossings are still detected through Geant4’s
geometry library. This is achieved by following the same call pattern as in standard Geant4
simulations: after each substep, LocateGlobalPointWithinVolume is called so as to notify
the geometry navigator that the particle has moved to a new position inside the current
volume. Then, IntersectChord computes an initial estimate of an intersection by means
of a linear segment between the endpoints of the substep, which is later refined through an
iterative procedure in EstimateIntersectionPoint. Still, this last function was improved by
the QSS polynomial dense output information; we offer a cheaper particle transport by evaluating
the polynomials instead of running the iterative, adaptive stepping algorithm implemented in
AccurateAdvance. Figure 3b sketches how an intersection point is computed in GQLink.
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(a) High-level architecture (b) Computation of intersection points

Figure 3: GQLink implementation details

We finally stress that QSS dense output is not fully exploited yet for boundary crossing
detection; this is in fact the main goal driving our current work.

4. Results and discussion
We start with a statistical validation of GQLink in the context of a CMS application in
order to ensure that it produces equivalent results than Geant4. After this, we compare
their computing performance in this same CMS setup and also in a simplified setup with a
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controlled, increasing number of boundary crossings. All simulations were run on a dedicated
Intel Xeon E5-2620 v2 CPU (clocked at 2.10 GHz) server with 8 GB of RAM and Ubuntu
14.04.4 LTS x86 64 (3.13.0-49-generic kernel) OS. The compiler used was gcc 4.8.4 (Ubuntu
4.8.4-2ubuntu1∼14.04.1).

GQLink validation was performed against a standalone Geant4 application featuring full CMS
(RunI) detector geometry, volume base magnetic field excerpted from CMSSW and a particle
gun shooting π− particles (10 GeV, 104 events). In Figure 4, we show how the particle steps
are distributed after 104 single π− events, for pions (left) and secondary electrons (right). We
observe that the number of steps produced are statistically consistent with those computed by
Geant4. This behavior is in fact present in every other particle type as well as in the number of
tracks.
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Figure 4: Number of steps for π− (left) and secondary electrons (right) from simulation of 104 single π−

events

As for the computing performance, Figure 5a compares the simulation time of GQLink and
Geant4 for an increasing number of events in the same CMS setup presented above. For each
number of events, a total of 50 simulations were run. The plot shows their mean values along
with the minimum and maximum values attained. In this case, GQLink performed about 17%
slower than Geant4. We inferred that this is due to a combination of issues: a relatively small
number of boundary crossings (about 8% of the total number of steps), a greater average number
of substeps per integration step (up to 3x with respect to Geant4, with the set relative accuracy
of 10−5) and frequent reinitializations of QSS state variables after each Geant4 step (required
to update the state derivatives after possible changes in the direction of the particle).

However, when the number of boundary crossings is controlled and can be forced to increase,
GQLink’s performance progressively improves and it eventually outperforms Geant4. This
behavior is shown in Figure 5b, where we consider a simplfied experimental setup very similar
to that of Figure 2 but with a single particle describing a helicoidal trajectory and with physics
interactions turned off. We see that GQLink outperforms Geant4 when using at least 300
crossing planes, and can be up to ∼35% faster for 700 planes. This is a consequence of the
improvement derived from the QSS polynomials implemented in EstimateIntersectionPoint,
as mentioned in Section 3.

Finally, we also analyzed the correctness and performance of the method using 50 Pythia
pp→ H → ZZ events (Z to all channels) (

√
s = 14 TeV) in the context of the CMS application.

In this case, we found that GQLink successfully simulated the 50 events in 5.86 hours, whereas
Geant4 took 4.8 hours. This is an increase of approximately 22%. Note, however, that the same
limitations discussed above apply in this scenario as well –namely, very few boundary crossings
and greater number of QSS substeps per integration step.
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Figure 5: Performance comparison between GQLink and Geant4

5. Conclusions
We developed GQLink, a prototype for QSS methods (as implemented by the standalone
simulation toolkit QSS Solver) within Geant4. It is conceived as an abstract interface that
allows connecting Geant4 to arbitrary external integrators, not limited to those provided by
QSS Solver. In order to validate its correctness and study its performance, we used a realistic
HEP application using a full CMS detector geometry, with magnetic field and both particle gun
events, shooting pions, as well as Pythia pp → H → ZZ events (Z to all channels) (

√
s = 14

TeV). We found that the number of steps and tracks produced are statistically consistent with
those of standard Geant4, suggesting the equivalence of the simulations. As for the performance,
since these scenarios have a very light boundary crossing activity, we found that GQLink is
currently about 17% slower. On the other hand, we studied a simplified scenario, with physics
interactions turned off, where a single particle describing helical trajectories moves throughout an
increasing, controlled number of crossing planes. In this setup, GQLink outperformed Geant4,
with a 35% speedup for 700 crossing planes. This is due to an improvement in the Geant4
geometry library, where we resorted to the knowledge stored in each QSS polynomial trajectory
in order to avoid some iterative stepping procedures used when locating intersection points. We
are currently working on fully exploiting these QSS capabilities for efficient volume crossing
detections. We aim at handling the detections completely on the QSS side, which is expected
to provide considerable performance boosts.
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