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Abstract. Models of viral dynamics are considered in this paper. These models describe 
different mechanisms of mutations and are formulated in the form of the systems of 
singularly perturbed partial integro-differential equations with two small parameters multiplying 
derivatives. The possibility of the passage to the limit of the solution to a degenerate problem 
is justified.

1. Introduction
Mathematical modeling of biological processes leads, as a rule, to the appearance of singularly
perturbed equations. The reason for this is the extreme complexity of biological systems. In
addition, such models should take into account the processes occurring on incommensurable time
scales. For example, the process of biological evolution is extremely slow, while the interactions
of a different nature that accompany it are significantly faster.

In this paper, three models of viral dynamics with different mechanisms of viral mutation
are considered. These models describe the population dynamics of healthy (uninfected) cells,
infected cells and free virus particles (virions). Due to the significant difference in the life-cycle
duration of the above-mentioned populations, the models can be written in the form of singularly
perturbed systems of partial integro-differential equations. For a singularly perturbed system
of ordinary differential equations, Tikhonov’s theorem is effective [1]. This theorem states that
the passage to the limit of the solution to a degenerate problem in a system with several small
parameters multiplying derivatives is justified. Some types of singularly perturbed equations
were considered in the papers [2]-[5]. In this paper, the system size reduction of the models of
viral dynamics is carried out, that allows to restrict ourselves to the study of a single equation.

2. Models
Let us consider the next models of viral dynamics with random mutations.

Model I:

http://creativecommons.org/licenses/by/3.0
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dx(t)
dt

= b− σx(t)−
∫

Ω
α(s)x(t)v(t, s)ds,

∂y(t, s)
∂t

=
∫

Ω
p1(s, r)α(r)x(t)v(t, r) dr −m(s)y(t, s),

∂v(t, s)
∂t

= k(s)y(t, s)− c(s)v(t, s).

Model II:

dx(t)
dt

= b− σx(t)−
∫

Ω
α(s)x(t)v(t, s)ds,

∂y(t, s)
∂t

= α(s)x(t)v(t, s)−m(s)y(t, s),

∂v(t, s)
∂t

=
∫

Ω
p2(s, r)k(r)y(t, r) dr − c(s)v(t, s).

Model III:

dx(t)
dt

= b− σx(t)−
∫

Ω
α(s)x(t)v(t, s)ds,

∂y(t, s)
∂t

= α(s)x(t)v(t, s)−m(s)y(t, s)− γ

(
y(t, s)−

∫

Ω
p3(s, r)y(t, r) dr

)
,

∂v(t, s)
∂t

= k(s)y(t, s)− c(s)v(t, s).

In these models x(t) is the concentration of uninfected (susceptible) cells at the time t, y(t, s),
v(t, s) are the density distributions of infected target cells (CD4+ cells, or T helper cells, or Th-
cells) and free virus particles respectively in a one-dimensional phenotype space s ∈ Ω at the
time t. The uninfected cells susceptible to the virus are produced at a constant rate b and die
of natural reasons unrelated to the virus infection at a rate σx(t), σ > 0. The factors α, m, k
and c are characteristics of the virus phenotype, and hence, they are functions of the variable s
or r.

In model I framework it is assumed that a mutation occur in the process of cell infection.
Function p1(s, r) describes the probability that the infected by virus of phenotype r cell produces
exclusively virus of phenotype s. Model II postulates that mutations occur in the process of
viral production by the cell. Function p2(s, r) describes the probability that a virion produced
by the infected by the virion with phenotype r cell is of phenotype s. Finally, in the model III
framework it is assumed that a cell, infected with viral phenotype r, after some moment switches
to production of the virus of phenotype s instead of phenotype r with a probability given by
function p3(s, r), and positive constant γ is the rate of such a mutation.

If the integral kernel p(s, r) is represented by the Gaussian distribution p(s, r) =
1

µ
√

π
exp(− (s−r)2

µ2 ) with small variance µ, then

∫

Ω
p(s, r)u(t, r) dr ≈ u(t, s) + µ

∂2u(t, s)
∂s2

.

Then the models can be formulated as the system of partial integro-differential equations.
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Model I:

dx(t)
dt

= b− σx(t)−
∫

Ω
α(s)x(t)v(t, s)ds,

∂y(t, s)
∂t

= α(s)x(t)v(t, s)−m(s)y(t, s) + µx(t)
∂2α(s)v(t, s)

∂s2
,

∂v(t, s)
∂t

= k(s)y(t, s)− c(s)v(t, s).

Model II:

dx(t)
dt

= b− σx(t)−
∫

Ω
α(s)x(t)v(t, s)ds,

∂y(t, s)
∂t

= α(s)x(t)v(t, s)−m(s)y(t, s),

∂v(t, s)
∂t

= k(s)y(t, s)− c(s)v(t, s) + µ
∂2k(s)y(t, s)

∂s2
.

Model III:

dx(t)
dt

= b− σx(t)−
∫

Ω
α(s)x(t)v(t, s)ds,

∂y(t, s)
∂t

= α(s)x(t)v(t, s)−m(s)y(t, s) + µγ
∂2y(t, s)

∂s2
,

∂v(t, s)
∂t

= k(s)y(t, s)− c(s)v(t, s).

3. Reduction
Following, for example [6], let us introduce the dimensionless variables and parameters

t = T t̄, s = Ss̄, x(t) = Xx̄(t̄), y(t, s) = Y (s̄)ȳ(t̄, s̄), v(t, s) = V (s̄)v̄(t̄, s̄), (1)

T =
1

µm0
, S = 1, X =

b

σ
, V =

k0

c0
Y =

k0

c0

b

m0
, Y =

b

m0
, (2)

where m0, k0, c0 are m(s), k(s), c(s) of the wild (initial or any fixed) strain. T is measured in
the units of time, while X, Y and V are in the units of concentrations of target cells and free
virus.

Substituting of (1) and(2) in to Model I yields

µ
m0

σ

dx̄(t̄)
dt̄

= 1− x̄(t̄)−
∫

Ω
R0(s̄)x̄(t̄)v̄(t̄, s̄) ds̄,

µ
m0

m(s̄)
∂ȳ(t̄, s̄)

∂t̄
=

∫

Ω
p1(s̄, r̄)R0(r̄)x̄(t̄)v̄(t̄, r̄) dr̄ − ȳ(t̄, s̄),

µ
m0

c(s̄)
∂v̄(t̄, s̄)

∂t̄
= ȳ(t̄, s̄)− v̄(t̄, s̄),

where R0(s̄) = bα(s)k(s)/(σm(s)c(s)) is the basic reproduction ratio.
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Denoting m̄(s̄) = m(s)/m0, ε = µm0/σ ν = σ/c0, we get singularly perturbed system with
two small parameters:

ε
dx̄(t̄)

dt̄
= 1− x̄(t̄)−

∫

Ω
R0(s̄)x̄(t̄)v̄(t̄, s̄) ds̄,

∂ȳ(t̄, s̄)
∂t̄

=
m̄(s̄)

µ

(∫

Ω
p1(s̄, r̄)R0(r̄)x̄(t̄)v̄(t̄, r̄) dr̄ − ȳ(t̄, s̄)

)
,

εν
∂v̄(t̄, s̄)

∂t̄
=

c(s̄)
c0

(ȳ(t̄, s̄)− v̄(t̄, s̄)) .

Setting ν = 0, we obtain the so-called first-order degenerate system

ε
dx̄(t̄)

dt̄
= 1− x̄(t̄)−

∫

Ω
R0(s̄)x̄(t̄)v̄(t̄, s̄) ds̄,

∂ȳ(t̄, s̄)
∂t̄

=
m̄(s̄)

µ

(∫

Ω
p1(s̄, r̄)R0(r̄)x̄(t̄)v̄(t̄, r̄) dr̄ − ȳ(t̄, s̄)

)
,

0 =
c(s̄)
c0

(ȳ(t̄, s̄)− v̄(t̄, s̄)) .

The third equation is algebraic and has root v̄ = ȳ. For the first-order associated equation

∂v̂(τ, s̄)
∂τ

=
c(s̄)
c0

(v̂(τ, s̄)− ȳ) ,

where ȳ enters as a parameter, the root v̂ = ϕ(ȳ) = ȳ is the asymptotically stable (in the sense
of Lyapunov) stationary point.

Let us add the initial conditions x̄(0) = x0, ȳ(0, s̄) = y0(s̄) and v̄(0, s̄) = v0(s̄). At the initial
value of the parameter ȳ , i.e., at ȳ = y0(s̄), the first-order associated equation with the initial
condition v̄(0, s̄) = v0(s̄) has a unique solution v̂ = y0(s̄) +

(
v0(s̄)− y0(s̄)

)
exp

(
− c(s̄)

c0
τ
)
, and

v̂(τ, s̄) → ϕ(y0(s̄)) = y0(s̄) as τ → +∞ ∀s̄ ∈ Ω. Thereby the initial point v0(s̄) of the first-order
associated equation belongs to the domain of attraction of the stable stationary point ϕ(y0(s̄)).
Thus, for sufficiently small ν, the singularly perturbed system with two small parameters has
a unique solution x̄(t̄, ε, ν), ȳ(t̄, s̄, ε, ν) and v̄(t̄, s̄, ε, ν), and, for some t1 , the following limiting
equalities hold:

x̄(t̄, ε, ν) → x̄0(t̄, ε) ∀t̄ ∈ [0, t1] ∀s̄ ∈ Ω,

ȳ(t̄, s̄, ε, ν) → ȳ0(t̄, s̄, ε) ∀t̄ ∈ [0, t1] ∀s̄ ∈ Ω,

v̄(t̄, s̄, ε, ν) → ϕ(ȳ0(t̄, s̄, ε)) ∀t̄ ∈ (0, t1] ∀s̄ ∈ Ω,

as ν → +∞, where x̄0(t̄, ε), ȳ0(t̄, s̄, ε) are the solutions to the first-order degenerate system.
Note that the third limiting equality holds for t 6= 0, as the solution v̄ = ϕ(ȳ) of the first-
order degenerate system, generally speaking, does not satisfy initial condition for this variable
(v̄(0, s̄) 6= ϕ(ȳ(0, s̄))). The boundary layer phenomenon occurs [7]. The first order associated
equation is also called the boundary layer equation.

Then let us ε = 0. We obtain the second-order degenerate system
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0 = 1− x̄(t̄)−
∫

Ω
R0(s̄)x̄(t̄)v̄(t̄, s̄) ds̄,

∂ȳ(t̄, s̄)
∂t̄

=
m̄(s̄)

µ

(∫

Ω
p1(s̄, r̄)R0(r̄)x̄(t̄)v̄(t̄, r̄) dr̄ − ȳ(t̄, s̄)

)
,

0 =
c(s̄)
c0

(ȳ(t̄, s̄)− v̄(t̄, s̄)) ,

first equation in which is algebraic with respect to x̄ and has a root x̄ = Ψ(v̄) =(
1 +

∫
Ω R0(s̄)v̄(t̄, s̄) ds̄

)−1. This root is the asymptotically stable (in the sense of Lyapunov)
stationary point of the second-order associated equation

x̂(τ)
dτ

= −
(

1 +
∫

Ω
R0(s̄)v̄(t̄, s̄) ds̄

)
x̂(τ) + 1.

The latter equation with the initial condition x̄(0) = x0 at the initial value of the parameter
v̄ v̄ = v0(s̄) has a unique solution x̂(τ) =

(
x0 − 1/f

)
exp(−fτ) + 1/f , where 1/f = Ψ(v0(s̄)) =

1 +
∫
Ω R0(s̄)v0(s̄) ds̄, for all τ ≥ 0, and x̂(τ) → Ψ(v0(s̄)) as τ → +∞. Thus, the initial point

x0 of the second-order associated equation belongs to the domain of attraction of the stable
stationary point. Consequently, for some t2

x̄0(t̄, ε) → Ψ(ȳ00(t̄, s̄)) ∀t̄ ∈ (0, t2] ∀s̄ ∈ Ω,

ȳ0t̄, s̄, ε) → ȳ00(t̄, s̄) ∀t̄ ∈ [0, t2] ∀s̄ ∈ Ω,

v̄0(t̄, s̄, ε) → ϕ(ȳ00(t̄, s̄)) ∀t̄ ∈ (0, t2] ∀s̄ ∈ Ω,

as ε → +∞, where ȳ00(t̄, s̄) is the solutions to the second-order degenerate system.
Finally, we obtain single integro-differential equation

∂ȳ(t̄, s̄)
∂t̄

=
m̄(s̄)

µ

(∫
Ω p1(s̄, r̄)R0(r̄)ȳ(t̄, r̄) dr̄

1 +
∫
Ω R0(r̄)ȳ(t̄, r̄) dr̄

− ȳ(t̄, s̄)
)

.

If the kernel p1(s, r) is can be represented by a normal distribution with a small standard
deviation, then

∂ȳ(t̄, s̄)
∂t̄

=
m̄(s̄)

µ

(R0(s̄)− 1)ȳ(t̄, s̄)
1 +

∫
Ω R0(r̄)ȳ(t̄, r̄) dr̄

(
1−

∫
Ω R0(r̄)ȳ(t̄, r̄) dr̄

R0(s̄)− 1

)

+
m̄(s̄)

1 +
∫
Ω R0(r̄)ȳ(t̄, r̄) dr̄

∂2R0(s̄)ȳ(t̄, s̄)
∂s̄2

.

Model II with dimensionless variables and parameters is also a singularly perturbed system
with two small parameters:

ε
dx̄(t̄)

dt̄
= 1− x̄(t̄)−

∫

Ω
R0(s̄)x̄(t̄)v̄(t̄, s̄)ds̄,

εθ
∂ȳ(t̄, s̄)

∂t̄
= m̄(s̄) (R0(s̄)x̄(t̄)v̄(t̄, s̄)− ȳ(t̄, s̄)) ,

∂v̄(t̄, s̄)
∂t̄

=
c̄(s̄)
µ

(∫

Ω
p̄2(s̄, r̄)ȳ(t̄, r̄) dr̄ − v̄(t̄, s̄)

)
,
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where c̄(s̄) = c(s)/m0, p̄2(s̄, r̄) = p2(s̄, r̄)m(s̄)k(r̄)/(k(s̄)m(r̄)), θ = σ/m0.
Assuming that ε = 0 and θ = 0, we get equalities

x̄(t̄) =
1

1 +
∫
Ω R0(s̄)v̄(t̄, s̄) ds̄

, R0(s̄)x̄(t̄)v̄(t̄, s̄) = ȳ(t̄, s̄).

Thus

ȳ(t̄, s̄) =
R0(s̄)v̄(t̄, s̄)

1 +
∫
Ω R0(s̄)v̄(t̄, s̄) ds̄

.

As a result, the Model II can be reduced to a single integro-differential equation

∂v̄(t̄, s̄)
∂t̄

=
c̄(s̄)
µ

(∫
Ω p̄2(s̄, r̄)R0(r̄)v̄(t̄, r̄) dr̄

1 +
∫
Ω R0(r̄)v̄(t̄, r̄) dr̄

− v̄(t̄, s̄)
)

,

or, in the case of the normal distribution with a small standard deviation,

∂v̄(t̄, s̄)
∂t̄

=
c̄(s̄)
µ

(R0(s̄)− 1)v̄(t̄, s̄)
1 +

∫
Ω R0(r̄)v̄(t̄, r̄) dr̄

(
1−

∫
Ω R0(r̄)v̄(t̄, r̄) dr̄

R0(s̄)− 1

)

+
c̄(s̄)

1 +
∫
Ω R0(r̄)v̄(t̄, r̄) dr̄

∂2R0(s̄)v̄(t̄, s̄)
∂s̄2

.

Dimensionless Model III has the form

ε
dx̄(t̄)

dt̄
= 1− x̄(t̄)−

∫

Ω
R0(s)x̄(t̄)v̄(t̄, s̄)ds̄,

∂ȳ(t̄, s̄)
∂t̄

=
m̄(s̄)

µ
(R0(s̄)x̄(t̄)v̄(t̄, s̄)− ȳ(t̄, s̄))− γ̄

µ

(
ȳ(t̄, s̄)−

∫

Ω
p̄3(s̄, r̄)ȳ(t̄, r̄) dr̄

)
,

εν
∂v̄(t̄, s̄)

∂t̄
=

c(s̄)
c0

(ȳ(t̄, s̄)− v̄(t̄, s̄)) .

Here p̄3(s̄, r̄) = p3(s̄, r̄)m(s̄)/m(r̄), γ̄ = γ/m0.
If ν = 0 and ε = 0, the next equalities yield:

ȳ(t̄, s̄) = v̄(t̄, s̄), x̄(t̄) =
1

1 +
∫
Ω R0(s̄)v̄(t̄, s̄) ds̄

.

Model III also reduced to a single integro-differential equation

∂v̄(t̄, s̄)
∂t̄

=
m̄(s̄)

µ

(R0(s̄)− 1)v̄(t̄, s̄)
1 +

∫
Ω R0(s̄)v̄(t̄, s̄) ds̄

(
1−

∫
Ω R0(s̄)v̄(t̄, s̄) ds̄

R0(s̄)− 1

)

− γ̄

µ

(
v̄(t̄, s̄)−

∫

Ω
p̄3(s̄, r̄)v̄(t̄, r̄) dr

)
.

If the kernel p̄3(s̄, r̄) is represented by a normal distribution with a small standard deviation,
then this equation has the form

∂v̄(t̄, s̄)
∂t̄

=
m̄(s̄)

µ

(R0(s̄)− 1)v̄(t̄, s̄)
1 +

∫
Ω R0(r̄)v̄(t̄, r̄) dr̄

(
1−

∫
Ω R0(r̄)v̄(t̄, r̄) dr̄

R0(s̄)− 1

)
+ γ̄

∂2v̄(t̄, s̄)
∂s̄2

.



The IV International Conference on Information Technology and Nanotechnology

IOP Conf. Series: Journal of Physics: Conf. Series 1096 (2018) 012050

IOP Publishing

doi:10.1088/1742-6596/1096/1/012050

7

4. Admissibility of the passage to the limit
In [8] the theorem, that connects the solutions of the singularly perturbed system of partial
integro-differential equations with one small parameter, is proved. Let us generalize this theorem
to the case of Model I and III (for Model II this can be done in a similar way).

Let us consider the singularly perturbed system of integro-differential equations with two
small parameters

ε
dx

dt
= f(x,

∫

Ω
g(s, v)ds)

εν
∂v

∂t
= h(y, v)

∂y

∂t
= w(s, x, y, v,

∫

Ω
q(s, r, y, v)dr) (3)

with the initial conditions

x(0) = x0, v(0, s) = v0(s), y(0, s) = y0(s), (4)

where x, v, y ∈ R, ε, ν are the small positive parameters.
We assume that system (3) satisfies the following conditions.
i). The functions f(x, z1), g(s, v), h(y, v), w(s, x, y, v, z2) and q(s, r, y, v) together with their

partial derivatives with respect to all variables, are uniformly continuous and bounded in the
respective domains D1 = {|x| ≤ a, |z1| ≤ b1}, D2 = {s ∈ Ω, |v| ≤ c}, D3 = {|y| ≤ d, |v| ≤ c},
D4 = {s ∈ Ω, |x| ≤ a, |y| ≤ d, |v| ≤ c, |z2| ≤ b2}, D5 = {s, r ∈ Ω, |y| ≤ d, |v| ≤ c}.

ii). The equation h(y, v) = 0 has an isolated root v = ϕ(y) in the domain {|y| ≤ d} and in
this domain function v = ϕ(y) is continuously differentiable.

iii). The inequality hv(y, ϕ(y)) ≤ −α < 0 holds for |y| ≤ d. This condition implies, that the
stationary point v̂ = ϕ(y) of the first-order associated equation

∂v̂

∂τ
= h(y, v̂), (5)

which contains y as a parameter, is Lyapunov asymptotically stable as τ → +∞ uniformly with
respect to y , |y| ≤ d.

iv). There exist a solution v̂ = v̂(τ, s) of the problem

∂v̂

∂τ
= h(y0(s), v̂), v̂(0, s) = z0(s), (6)

for τ ≥ 0, ∀s ∈ Ω. Further, this solution tends to the stationary point ϕ(y0(s)) as τ → +∞
∀s ∈ Ω, i.e. v0(s) belongs to the domain of attraction of the stable stationary point ϕ(y0(s)).

v). The equation f(x, z1) = 0 has an isolated root x = ψ(z1) in the domain |x| ≤ a and in
this domain function x = ψ(z1) is continuously differentiable.

vi). The inequality fx(ψ(z1), z1) ≤ −β < 0 (z1 =
∫
Ω g(s, ϕ(y))ds) holds for |y| ≤ d, i.e. the

stationary point x̂ = ψ(z1) of the second-order associated equation

dx̂

dτ
= f(x̂,

∫

Ω
g(s, ϕ(y))ds), (7)

which contains y as a parameter, is Lyapunov asymptotically stable as τ → +∞ uniformly with
respect to y , |y| ≤ d.

vii) There exist a solution x̂(τ) of the problem
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dx̂

dτ
= f(x̂,

∫

Ω
g(s, ϕ(y0(s)))ds), x̂ = x0 (8)

for τ ≥ 0. Further, this solution tends to the stationary point ψ(
∫
Ω g(s, ϕ(y0(s)))ds) as τ → +∞,

i.e. x0 belongs to the domain of attraction of the stable stationary point.
viii) The truncated system

∂y

∂t
= w(s, ψ(z1), y, ϕ(y),

∫

Ω
q(s, r, y, ϕ(y))dr),

x = ψ(z1), (9)
v = ϕ(y),

z1 =
∫

Ω
g(s, ϕ(y))ds

with initial condition

y(0, s) = y0(s) (10)

has a unique solution ȳ(t, s), x̄(t) = ψ(
∫
Ω g(s, ϕ(ȳ(t, s)))ds), v̄(t, s) = ϕ(ȳ(t, s)).

Theorem. If conditions i-viii are satisfied, then, for sufficiently small ε, ν, for some T > 0
problem (3), (4) has a unique solution x(t, ε, ν), v(t, s, ε, ν), y(t, s, ε, ν) which is related to the
solution x̄(t), v̄(t, s), ȳ(t, s) of the truncated problem (9), (10) by the limit formulas

lim
ε→+0,ν→+0

x(t, ε, ν) = x̄(t) = ψ(
∫

Ω
g(s, ϕ(ȳ(t, s)))ds), 0 < t ≤ T,

lim
ε→+0,ν→+0

v(t, s, ε, ν) = v̄(t, s) = ϕ(ȳ(t, s)), 0 < t ≤ T, s ∈ Ω,

lim
ε→+0,ν→+0

y(t, s, ε, ν) = ȳ(t, s), 0 ≤ t ≤ T, s ∈ Ω.

5. Conclusion
In this paper, we considered three models of viral dynamics with different mechanisms of viral 
mutation, which describe the population dynamics of uninfected cells, infected cells and free virus 
particles. Based on Tikhonov’s theorem time scale separation procedure made it possible to 
reduce the original systems of three integro-differential equations to a single one. The latter 
becomes significant in the numerical simulation of such systems because of their extreme 
complexity. Since in evolutionary biology mathematical models are usually formulated as partial 
integro-differential equations, the same concept can be applied to ones as well.
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