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Abstract. Ionic liquids and amino acids are recently introduced as novel gas hydrate inhibitors. 
However, they show less inhibition impact as compared to commercial gas hydrate inhibitors. 
Therefore, testing the combined effort of some of the best performed ionic liquids and amino acids 
in open literature would be necessary to understand and probably increase their inhibition 
performance.  In this study, the synergic thermodynamic inhibition effect of 1-Ethyl-3-methy-
limidazolium chloride (EMIM-Cl) + glycine on methane hydrate is reported. A sapphire hydrate 
cell and the T-cycle method was used within the pressures and temperatures ranges of 3 - 11 MPa 
and 274 – 286 K, respectively. Surprisingly the inhibition preformation of the mixed 1-Ethyl-3-
methy-limidazolium chloride + glycine at 10 wt.% was found to be slightly less than pure 1-Ethyl-
3-methy-limidazolium chloride and glycine at same concentration, the results were all found to 
generally be in the same range with their pure systems (pure 1-Ethyl-3-methy-limidazolium 
chloride and glycine at 10wt%) . This behaviour is probably due to the colligative properties of 1-
Ethyl-3-methy-limidazolium chloride and glycine, thus, causing a relatively equal inhibition 
impact. 

1. Introduction 
Gas hydrates are crystalline compounds that consist of a gas as the “guest”, and water as the “host” 
molecule. Under conditions favoring gas hydrate formation (low temperatures and high pressures), guest 
molecules are trapped inside “cages” formed by water molecules linked through hydrogen bonds [1], [2]. 
The crystal structures of gas hydrates are determined by the guest-to-cage size ratio and the formation 
conditions [3], [4] . Gas hydrate formation can cause blockages in natural gas transmission lines because 
of its solid, nonflowing crystalline structures [5]. As a result of these findings, the oil and gas industries 
have dedicated much attention to the improvement of flow assurance technologies which are critical, 
especially during transportation under deep waters environments.   

One of the attractive strategies to reduce the risk of plugging in pipelines is the injection of 
thermodynamic hydrate inhibitors (THIs), which are able to shift the phase equilibria to lower 
temperatures and higher-pressures regions [6]. The phase equilibrium conditions for gas hydrate in the 
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presence of conventional THIs such as methanol and glycols have been extensively studied over many 
years. However, conventional THIs have several problems. In particular, the toxic nature of these 
chemicals causes serious environmental pollution in ecological systems and critical damage to the 
polymer used to seal pipelines [7]. There have been many attempts to use biodegradable low-dosage 
hydrate inhibitors (LDHIs). However, the capabilities of LDHIs to prevent hydrate formation are 
associated with uncertainties arising from the stochastic nature of hydrate nucleation and other kinetic 
factors [8].  

Currently, there is a continuous search for novel THIs that can solve the problems that limits present 
techniques. In searching for new THI chemicals, ionic liquids (ILs) and amino acids are recently reported 
as novel THIs for gas hydrate mitigations [9], [10]. Its known that, they both inhibits gas hydrate due to 
their hydrogen bonding potentials which basically arises from the anions of ILs [11]–[14] and the amine 
and carboxyl functional groups of amino acids [10], [15]–[17]. These recent discoveries have led to much 
research [18]–[20]  in selecting the best ILs or amino acids that can perform better than the conventional 
THIs. Most especially imidazolium base ILs and natural amino acids have received much attention and 
studies. Literature shows that 1-Ethyl-3-methy-limidazolium chloride and Glycine are one of the best gas 
hydrate inhibitors among the imidazolium ionic liquid family and naturally occurring amino acids. The 
average methane hydrate formation suppression temperature for 1-Ethyl-3-methy-limidazolium chloride 
and glycine at 10 wt.%  are 1.7 K and 1.78 K, respectively [21], [16].  

Nonetheless, these inhibition performance is relatively weak as against 2.5 K – 5 K for conventional 
THIs, therefore a synergist study of the best performed ILs and amino acids inhibitors is encouraging to 
develop effective THIs. In addition, the scarcity of ILs + amino acids synergistic study in open literature is 
a motivating factor for conducting this study.  In this study, the synergic thermodynamic effect of 1-Ethyl-
3-methy-limidazolium chloride (ILs) + glycine (amino acid) on methane hydrate formation is studied in an 
isochoric mode at a total concentration of 10 wt.% synergy (5 wt.% 1-Ethyl-3-methy-limidazolium 
chloride + 5 wt.% glycine). 

2. Methodology 

2.1. Materials  
The surface charge distribution structure of the chemicals used in this work are shown in Fig. 1. Glycine 
(purity 99.7%) and 1-Ethyl-3-methy-limidazolium chloride (EMIM-Cl) (purity 98%) was supplied by 
Merck. They were all used without further purification. Methane with purity of 99.995% was supplied by 
Gas Walker Sdn Bhd, Malaysia. Deionized water was used in preparing all solutions. Samples were 
prepared using gravimetric method using HR-250AZ analytical balance with an accuracy of ±0.0003 g. 
The chemicals were tested at 10 wt%, which consist of 50:50 % synergy of 1-Ethyl-3-methy-limidazolium 
chloride and glycine. 
 

  
1-Ethyl-3-methy-limidazolium chloride Glycine 

 
Figure 1. Chemical structure of 1-Ethyl-3-methy-limidazolium chloride and glycine 
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2.2. Experimental apparatus and Hydrate phase behavior measurement procedure  
The hydrate experimental apparatus and procedure validations  employed in this study to test 1-Ethyl-3-
methy-limidazolium chloride + glycine solution is described in elsewhere [16]–[19]. A 29 ml high 
pressure sapphire hydrate reactor is used. The reactor can work up to 20 MPa and 338.15 K, respectively.  
The isochoric T-cycle method [14], [20] is employed to measure the hydrate phase equilibrium data. 
Before the experimentation, the reactor is cleaned, and then the system temperature is set to about 2-3 K 
above the desired hydrate equilibrium temperature of the testing experimental pressure. 18 ml of 5 wt.% + 
5 wt.% 1-Ethyl-3-methy-limidazolium chloride + glycine solution is loaded into the reactor using a hand 
pump. The system is then pressurized with methane with aid of a booster to the desired experimental 
pressure. The system left to stabilize the stirrer turned on. When the system is stabilized, the system 
temperature is reduced fast to 273 K at 4 K/h for hydrate to form. The formation of hydrate in the reactor 
is noticed upon observing a sharp system pressure drop and visually through the reactor. When hydrates 
are formed, the system is initially heated fast at 4 K/h to about 5- 6 K near the desired hydrate dissociation 
temperature. then, the system is heated stepwise at an interval of 0.5 K/step with a holding time of 3 hours 
per step.  A computer data recording system is used to continuously record the pressure and temperatures 
changes in the reactor with an accuracy of ± 0.1 K and ± 0.01 MPa, respectively. The point of intersection 
where the heating curve meets with the cooling curve in the pressure-temperature plot is taken as the 
hydrate equilibrium point. 

3. Results and Discussions 
In this study, the experimental data for pure 1-Ethyl-3-methy-limidazolium chloride and glycine at 10 
wt.% are obtained from literature [21], [16] and are presented in Table 1 and Fig. 2, respectively. As 
observed in Fig. 2, the presence of pure 1-Ethyl-3-methy-limidazolium chloride and glycine significantly 
inhibits methane hydrate formation by moving its hydrate formation conditions to lower temperatures and 
high pressures regions.  

Nonetheless, the presence of 1-Ethyl-3-methy-limidazolium chloride + glycine also shows methane 
hydrate inhibition impacts. Surprisingly, the synergic inhibition impacts of 1-Ethyl-3-methy-limidazolium 
chloride + glycine is relatively similar to pure 1-Ethyl-3-methy-limidazolium chloride and glycine as 
illustrated in Fig. 2. Both 1-Ethyl-3-methy-limidazolium chloride and glycine inhibit hydrate by disrupting 
water activity in hydrate formation via forming hydrogen bonds with water molecules [10], [22], [17], 
[23]. The inhibition impact of mixed 1-Ethyl-3-methy-limidazolium chloride and glycine was expected to 
boost the performance of their pure components, instead a similar trend was observed. This surprising 
result suggests an equal combined colligative activity of 1-Ethyl-3-methy-limidazolium chloride and 
glycine on water activity to prevent hydrate formation.  
 

Table 1. Methane hydrate phase boundary data points in the presence of tested inhibitors 
Pure water [16] Glycine [16] 

 (10 wt.%) 
EMIM-Cl [21] 

 (10 wt.%) 
EMIM-Cl+ Glycine 
 (5 wt.% + 5 wt.%) 

P (MPa) T (K) P (MPa) T (K) P (MPa) T (K) P (MPa) T (K) 
4.58 279.00 4.65 277.25 3.47 274.3 4.7 277.8 
6.09 281.60 6.10 280.00 4.85 277.7 6.5 281 
7.40 283.40 7.62 282.10 6.43 280.3 7.7 282.6 
9.70 286.00 9.98 284.50 8.06 282.5 9.99 284.9 
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Figure 2. The methane hydrate phase boundary in the presence of inhibitors. 

 
Though the synergic inhibition impact of 1-Ethyl-3-methy-limidazolium chloride and glycine are in the 

same range, there seem to be a slight higher inhibition impact of pure 1-Ethyl-3-methy-limidazolium 
chloride and glycine over the mixed sample (see Fig. 2). This slight less inhibition performance of the 
mixed 1-Ethyl-3-methy-limidazolium chloride and glycine system from their pure components might be 
due to the interaction between 1-Ethyl-3-methy-limidazolium chloride and glycine. Which may result in a 
steric orientation of the hydrogen bonded water structure to align in a way which will reduce the methane 
hydrate inhibition impact. Therefore, it can be deduced that, 1-Ethyl-3-methy-limidazolium chloride + 
glycine synergic systems does not improve the hydrate inhibition performance of their pure system at the 
same concentration. However, this observation may be different when different type and family of IL and 
amino acids are tested. It must be stated that the molecular interaction between 1-Ethyl-3-methy-
limidazolium chloride and glycine is still not very clear and more analysis such as XRD or DLS is need to 
give a better understanding the effects of mix 1-Ethyl-3-methy-limidazolium chloride and glycine (or 
ionic liquids and glycine) on hydrate formation.  

4. Conclusions 
Herein, the synergetic thermodynamic effect of the best reported ionic liquid (1-Ethyl-3-methy-
limidazolium chloride) and amino acid (glycine) on the methane hydrate formation has been studied using 
a sapphire hydrate cell in an isochoric mode. The results revealed that the inhibition impact of mixed 1-
Ethyl-3-methy-limidazolium chloride and glycine at 10 wt.% (50/50) is generally similar to their pure 
components at the same concentration. Thus, suggesting that, the 1-Ethyl-3-methy-limidazolium chloride 
+ glycine synergic systems, does not improve the hydrate inhibition performance of their pure system. It is 
recommended that, further studies on different Types and families of ionic liquids and amino acids, as 
well as different hydrate formers at different operational conditions alongside molecular dynamics are 
required for the development of effective thermodynamic hydrate inhibitors. 
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