
Journal of Physics: Conference
Series

     

PAPER • OPEN ACCESS

Multicaloric effect in barium titanate nanotube
To cite this article: I A Starkov et al 2018 J. Phys.: Conf. Ser. 1124 081012

 

View the article online for updates and enhancements.

You may also like
A Generalized Presentation of Multi-caloric
Effects Based on Exterior Derivative
Theory and its Applications
Jun Yin

-

Theory of giant-caloric effects in
multiferroic materials
Melvin M Vopson

-

Future prospects for elastocaloric devices
Kurt Engelbrecht

-

This content was downloaded from IP address 18.119.116.43 on 16/05/2024 at 17:55

https://doi.org/10.1088/1742-6596/1124/8/081012
https://iopscience.iop.org/article/10.1088/1572-9494/ad4af6
https://iopscience.iop.org/article/10.1088/1572-9494/ad4af6
https://iopscience.iop.org/article/10.1088/1572-9494/ad4af6
https://iopscience.iop.org/article/10.1088/0022-3727/46/34/345304
https://iopscience.iop.org/article/10.1088/0022-3727/46/34/345304
https://iopscience.iop.org/article/10.1088/2515-7655/ab1573
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjssJMhasxaDhO-G7H4-St4kJMVCOu5svC0gAqtqM7r47ayYPw6sbPc7ZX5GNHgtAKdZBfTpLutlSnTW6LycVAr2tGspHU6xKsDdAHzIdCLhUXMdsgiQkpS4tNFc9FbD1Lo9fus5Wh4u_5VSNaD5auXNZnWJXC2AwqLKXUue2xloIpofxwVRlGSXebe6pj2TJcv_bASukDHsb0ZrwsWDiy9jlDb_Ca1omRChmbOprtzfAkPOoZCHUA-gv-gw7indLvwGHGAQ7TngAIycZYAKh6DKVJkHHHQjfOJa7P-uraXEBH2rRE_wgyiTug_zEdW0telRW1Y8WcmDdbOzSl5Z5UnApCdxc1RHb&sig=Cg0ArKJSzHJuD4_GmiEd&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

SPBOPEN 2018

IOP Conf. Series: Journal of Physics: Conf. Series 1124 (2018) 081012

IOP Publishing

doi:10.1088/1742-6596/1124/8/081012

1

 
 
 
 
 
 

 
 

Multicaloric effect in barium titanate nanotube 

I A Starkov1,2, I L Mylnikov3, A S Starkov2 

1Nanotechnology Center, St. Petersburg National Research Academic University RAS, 
St. Petersburg 194021, Russia 
2National Research University of Information Technologies, Mechanics and Optics, 
St. Petersburg 197101, Russia 
3Department of Physical Electronics and Technology, St. Petersburg Electrotechnical 
University, St. Petersburg 197376, Russia 
starkov@spbau.ru 

 
Abstract. One of the characteristic features of multiferroic materials is the dimensional effect, 
when the physical properties of a sample depend on its size. To describe this effect, it is 
necessary to take into account not only the basic physical quantities: the electric field, 
polarization, strain tensor, stresses, temperature, but also their spatial derivatives (gradients). In 
this case, both the order of differential equations describing the behaviour of the sample and 
the number of boundary conditions increase. As a result, a surface layer appears near the 
boundary, in which the above-mentioned physical quantities change abruptly. The thickness of 
this layer is 1-5nm. The properties of a similar layer for a barium titanate nanotube and its 
effect on its thermal properties are investigated. It is shown that as the nanotube size decreases, 
the multicaloric effect (µCE) increases. At a nanotube thickness of 5nm µCE is 3 times greater 
than the effect for bulk materials. 

1. Introduction 

Caloric effects (CEs) consist in changing the temperature or entropy of the sample when the field is 
applied or removed. The main caloric effects are the magnetocaloric, electrocaloric (ECE), and 
elastocaloric ones which correspond to the influence of a magnetic, electric, and elastic field, 
respectively. The magnitude of CEs is determined by the temperature dependence of the magnetic, 
electric, or elastic constants. The greatest values are achieved near phase transitions, where the 
temperature dependence of the above coefficients is especially significant. If a change in thermal 
properties of a sample depends on several fields, then the presence of the multicaloric effect (µCE) [1] 
is indicated. Interaction of fields of different nature can lead to a significant increase in magnitude of 
CEs (synergistic phenomena) and µCE can exceed single components. Since this interaction increases 
with a decrease in the dimensions of the sample, a multiple increase in µCE should be expected for 
nanometer-scale objects. One of the possibilities of this interaction is the flexoelectric effect (FEE). 
Direct FEE is the occurrence of polarization due to inhomogeneous strain. The inverse FEE is defined 
as the appearance of a strained bending of a thin plate when it is polarized. Experiments carried out on 
BaTiO3 single crystals (size of the order of tens of micrometers) confirmed the existence of both 
direct and inverse FEE [2]. 

The dependence of the flexoelectric coefficients on temperature results in the appearance of a 
flexocaloric effect (FCE), as first predicted in [1]. According to the calculations for the PMN ceramics 
with a strain gradient of 1m-1, the temperature change in the FCE depends on the ambient temperature 
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and varies from 5µK at T=240K to -6µK at T=299K. Calculations based on a first principles approach 
confirmed the existence of FCE in the barium strontium titanate (BST) ceramics [3]. The effect is 
1.5K at T = 289K under the application of a strain gradient of 1.5µm-1. The highest known value of 
FCE is 60K and it was obtained as a result of calculations for BST ceramics. However, it is reached in 
a layer of thickness on the order of 1nm [4]. In this case the magnitude of the FEE is determined by 
enormous values of the strain gradient (106-107m-1) because of the presence of a misfit strain existing 
at the boundaries of two crystals with different atomic lattice constants. From the results reported in 
literature, it follows that the FCE increases with decreasing film thickness. For instance, the magnitude 
of flexocaloric effect is less than 1% of the electrocaloric effect for BST film of 100nm thickness. In 
turn, the values of FCE and ECE coincide for 16nm films, while FCE already exceeds ECE by 3 times 
for thin 5nm films. 

When describing any physical phenomena in nanoscale multiferroic materials, one should take 
into account not only the basic physical quantities: the electric and magnetic field strengths, 
polarization and magnetization, the strain and strain tensor, temperature, but also their spatial 
derivatives (gradients). A theory that takes into account the gradients of deformation in elastic bodies 
was developed in the mid-sixties of the last century [5]. A general theory describing the joint action of 
electric, magnetic, elastic, and thermal phenomena with allowance for gradient terms near phase 
transitions has been developed in recent years by a number of authors (see, for example, [2,6,7]). The 
equations of state of these materials, as a rule, are derived on the basis of variational principles from 
the condition of minimality of the thermodynamic potential W. The boundary conditions, according to 
the calculus of variations, must also be determined by the same potential. 

In the presence of four fields (electric, magnetic, elastic, and thermal) there are altogether 10 
gradient effects. This makes it difficult to estimate them accurately. In view of this, in order to 
simplify the subsequent calculations, we exclude from consideration the magnetic field and the 
temperature gradients. The magnetic field can be taken into account just as an electric field. For 
nonlinear ferroelectrics, both the gradients of the electric field strength and the polarization or electric-
displacement gradients can be considered. However, in the sequel we confine ourselves to the case of 
only the presence of the polarization gradient in W. Besides, it is natural to assume that the 
thermodynamic potential, which is a scalar quantity, does not include the polarization itself, but its 
square. As a result, there are 3 gradient effects. The contribution to W of these effects is given by the 
squares of the gradients of the components of the polarization vector and the strain tensor, as well as 
products of the gradients of these quantities. Since the 3 gradient effects depend on the temperature, 
they must contribute to the entropy or temperature of the sample. This means that there are 3 caloric 
effects associated with gradient phenomena, which we will call gradient-caloric. As an example of the 
application of the new model, µCE in a barium titanate nanotube is investigated. 

2. The approach 

Let us describe a sample occupying the volume V bounded by the surface S. For such a purpose, we 
use the energy density w and introduce displacement vectors u with components ui, (i = 1, 2, 3), and 
the potential φ. In the usual way, we define the electric field E = - φ,i , the strain tensor uij = (ui,j + 
uj,i)/2, and the gradient of deformations vijk = uk,ij. Hereinafter, the subscript after the comma means 
differentiation with respect to the corresponding variable in the Cartesian coordinate system x1, x2, x3. 
We believe that the energy density w, in addition to the electric field Ei, depends both on the strain 
tensor uij and on its gradient vijk. Moreover, it is assumed that w depends on the polarization 
components Pi and their derivatives Pi,j. Then the total energy W stored in the volume V has the form 

 ,( , , , , ) d .ij ijk i i i jV
W w u v E P P V≡ ∫  (1) 

The equation (1) means that the sample under consideration has both elastic and electrical properties 
that depend not only on the deformation and the electric field, but also on the gradients of deformation 
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and polarization. Such a medium for brevity will be called the gradient-electroelastic. Varying (1) 
leads to the relation 

 ,( ) d ,ij ij ijk ijk i i i ij i jV
i

w
W u v D E P J P V

P
δ σ δ τ δ δ δ δ∂= + + + +

∂∫  (2) 

in which σij, τijk, Di, Jij are, respectively, the stress tensor, the higher-order strain tensor [5], the electric 
displacement, and the conjugate quantity 

 
,

, , , .ij ijk i ij
ij ijk i i j

w w w w
D J

u v E P
σ τ∂ ∂ ∂= = = =

∂
∂

∂ ∂ ∂
 (3) 

In (2),(3) we use the Einstein summation convention, whereby we agree to sum over repeated indices. 
Note that the variables σij, τijk, Di, Jij and uij, vijk, Ei, Pi,j are generalized forces and coordinates 
conjugated to one another – the generalized forces are associated with the generalized coordinates. 
Using the Ostrogradskii-Gauss theorem allows one to transform the volume integrals in (2) to surface 
integrals 

 
, , , ,

, ,

( )  d

[( ) ]d ,

jk j ijk ij k i i ij j iV
i

jk ijk i j k ijk i k j j j ij j iS

w
W u D J P V

P

n u n u D n J n P S

δ σ τ δ δϕ δ

σ τ δ τ δ δϕ δ

  ∂= − + + − +  ∂  

+ − + + +

∫

∫

 (4) 

where nj are the components of the normal vector to S. The extremality condition (1), according to (4), 
gives us the equations 

 , , ,0, 0, ,jk j i i ij j
i

w
D J

P
ς ∂= = =

∂
 (5) 

in which the generalized stress ζjk is defined by the equality ζjk = σjk – τijk,i. To obtain the boundary 
conditions, we emphasize that the quantities δuk,j cannot be considered independent, since they are 
determined by the values δuk on the surface S. In view of this, we represent δuk,j as 

 ,
||d d ,k j j k j ku u n uδ δ δ⊥= +  (6) 

i.e. decompose the derivative into the normal and tangential components [5-6] 

 ||d , d ( ) ,k j jk j k
k k

n n n
x x

δ⊥ ∂ ∂≡ ≡ −
∂ ∂

 (7) 

where δjk is the Kronecker symbol. After substituting (6) in (4) and taking into account (5), the surface 
part of the total energy variation δWuS containing δujk can be written out from (4) as 

 ( d ) d .uS k k k kS
W T u R u Sδ δ δ⊥= +∫  (8) 

Here we use the notation 

 | |||(d ) d ( ),   .k i ik i j ijk l l j i ijk k i j ijkT n n n n n R n nς τ τ τ≡ + − ≡  (9) 

From (8), it follows that the following 20 boundary conditions must be satisfied at the interfaces of the 
flexoelectrics: 

 [ ] 0,   [ ] 0,   [ ] 0,   [d ] 0,   [ ] 0,   [ ] 0,   [ ] 0,   [ ] 0.k k k k k k k k iku P u R T n D n Jϕ ⊥= = = = = = = =  (10) 
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The symbol [X] denotes the jump in the quantity X when passing through the interface. The first three 
conditions are the standard continuity of the potential, displacements, and polarization. Continuity of 
the normal component of the electric displacement nkDk is also included in the ordinary boundary 
conditions of electrostatics. The continuity condition of Tk is a generalization of the continuity 
condition for niσij in the usual theory of elasticity. New are the conditions of continuity for d┴uk and Rk. 
Thus, the electroelastic field in a flexoelectric must satisfy 5 equations (5), 20 conditions on the 
internal interfaces of media (10) and 10 conditions on the outer boundaries, which can consist of the 
specification uk, d┴uk, φ, Pi or Tk, Rk, nk, Dk, nkJik, or a combination of the listed conditions. In 
particular, in accordance with (9), the following equalities must be satisfied on the external free 
boundaries 

 0, 0, 0, 0.k k k k k ikn D T R n J= = = =  (11) 

We emphasize that the above derivation of equations and boundary conditions does not depend on the 
form of w. It is a generalization to the case of a flexoelectric of a similar derivation for an elastic body 
[5]. 

For the thermal properties description, we assume that the energy (1) depends also on the 
temperature T. Then the specific entropy s = - ∂w/∂T and the total entropy S = - ∂W/∂T are determined 
in a standard manner. Variation of entropy occurs by analogy with the variation of energy and gives us 

 

2
,

,, ,

,

 d

d  d .

jk ijk ij ji
i iV

i ij ij

jk ijk i j j j ij jk k
k k iS

JD w
S u P V

T T T P T T

n D n J nT R
u u P S

T T T T T T

σ τ
δ δ δϕ δ

σ τ
δ δ δϕ δ⊥

  ∂ ∂ ∂     ∂ ∂  = − − − − −        ∂ ∂ ∂ ∂ ∂ ∂          

 ∂ ∂ ∂ ∂  ∂ ∂− − + + + +  ∂ ∂ ∂ ∂ ∂ ∂  

∫

∫

 (12) 

It is important to underline that the relation (12) is derived for the first time and allows determining all 
the thermal characteristics of the gradient-electroelastic medium. One may conclude that there are 2 
types of caloric effects – volume and surface. Surface effects, if we neglect the temperature 
dependence of the normal vectors, do not give a contribution to the change in entropy for free 
boundaries (when (11) is fulfilled). Such a contribution exists for a fixed boundary. In addition to 
volume and surface caloric effects, dynamic effects due to the time dependence of the variables 
occurring in w must also exist by analogy with the FEE [2]. To take them into account, we should add 
time derivatives to (1). Nonetheless, we will not do this in this study since dynamic CEs deserve 
consideration in a separate article. 

3. Multicaloric effect in barium titanate nanotube 

As a simple example of using the equations derived above, let us consider the problem of calculating 
the electroelastic field in a nanotube from a gradient-electroelastic material – barium titanate. We 
denote the internal radius by R1, the outer radius by R2, and the height of the nanotube by H. We use a 
cylindrical coordinate system r, θ, z, whose origin is located in the center of the bottom base (see 
figure 1(a)). The electric potential is equal to 0 at the bottom base and to the given value V at the upper 
base (for z = H). On the outer boundary (at r = R2) we will consider the given mechanical pressure p. 
The internal pressure is set to 0. The remaining boundary conditions are considered to be free (11). 
Because of the axial symmetry of the problem, only the components of the displacement vectors ur, uz 
and the polarizations Pr, Pz are different from 0. The energy density in the model under consideration 
can be written in the form 

 LGD elast str grad,w w w w w= + + +  (13) 



SPBOPEN 2018

IOP Conf. Series: Journal of Physics: Conf. Series 1124 (2018) 081012

IOP Publishing

doi:10.1088/1742-6596/1124/8/081012

5

 
 
 
 
 
 

 
 

 

 

 

Figure 1. (a) The barium titanate nanotube under consideration. (b) The coordinate dependence of 
the displacement ur for different values of nanotube thickness.  

where 

 
2 2 2 4 4 4 2 2 2 2 2 2

electr 1 1 2 3 11 1 2 3 12 1 2 1 3 2 3
6 6 6 4 2 2 4 2 2 4 2 2 2 2 2

111 1 2 3 112 1 2 3 2 1 3 3 2 1 123 1 2 3

( ) ( ) ( )

( ) [ ( ) ( ) ( )] ,

w a P P P a P P P a P P P P P P

a P P P a P P P P P P P P P a P P P

= + + + + + + + + +
+ + + + + + + + + +

 (14) 

 2 2 2 2 2 2
elast 11 11 22 33 12 11 22 11 33 22 33 44 32 13 12

1 1
( ) ( ) ( ),

2 2
w c u u c u u u u u u c u u uσ= + + + + + + + +  (15) 

 
( )2 2 2 2 2 2 2 2 2

str 11 11 1 22 2 33 3 12 11 2 3 22 1 3 33 2 1

44 23 2 3 13 1 3 12 1 2

( ) ( ) ( ) ( )

( ).

w q u P u P u P q u P P u P P u P P

q u P P u PP u PP

= + + + + + + + + +

+ + +
 (16) 

 grad , , , , , , .( )ijkl ij k l ij l k ijkl k l i j ijklmn ij k lm nw f u P u P g P P h u u= − + +  (17) 

Here a are the Ginzburg-Landau coefficients, cij are the elastic constants/moduli of elasticity, qij are 
the coefficients of electrostriction, fijkl, gijkl, hijklmn are the gradient coefficients. Calculation results for 
solving the equations (5) with the above boundary conditions are presented in figures 1(b), 2. 

4. Conclusion 

The model outcome allows us to draw several important conclusions. Among them is the fact that the 
multicaloric effect in nanometer-sized samples can significantly (several times) exceed the effect in 
structures larger than 1mm. The latter finding can be used for creating a chip-size solid-state cooler as 
the obtained values of the temperature change for the multicaloric effect are sufficient for the 
operation of the device. The attention of the study has been directed toward the flexocaloric effect. As 
the nanotube size decreases, the FCE increases. Moreover, the flexocaloric effect can be either 
positive or negative and strongly dependent on the direction of the strain gradient. The difference can 
reach dozens of times. In this study we have considered only the strain gradient in the radial direction. 
The sign and magnitude of FCE may be different for other directions. 
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Figure 2. The temperature change in the multicaloric effect for a barium titanate nanotube (a) 2nm, 
(b) 5nm, (c) 20nm, and (d) 50nm thick. 
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