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Abstract. We present benchmarking results from a solver for hypersonic flow problems. The
aim of the work is to verify new numerical methods designed for solving coupled heat and
mass transfer problem with explicit or implicit time marching schemes using multiple graphics
processing units and central processing units hybrid computational architecture without any
usage of ANSYS Fluent. The verification is performed on the problem of a flow over the
sphere. We consider hypersonic flow regimes of Mach number M = 20–30. New results are
compared with results of the previous version of the code, where ANSYS Fluent was used to
solve body heat and ablation problems. We consider the body shape after surface ablation,
heat loads on the surface and aerodynamic loads on the whole sphere. We also compare timings
between ANSYS Fluent and new heat and mass solver; compare time difference between explicit
and implicit methods for gas dynamics part and present total wall time for convergence using
different methods.

1. Introduction

The main problem of the hypersonic flow regime for computations is the stiff conditions that are
laid on numerical methods. In our previous papers [1–3], we presented methods that are aimed at
heterogeneous high performance computational architecture using general purpose computations
on graphics processing units (GPUs). The previous code used explicit time integration and
commercial software (ANSYS Fluent) to solve solid body problem of heat transfer and ablation.
Here we present new methods that have implicit time stepping procedure for gas dynamical part
and new high performance GPU orientated solid body solver for heat transfer and ablation. The
main goal of the paper is to perform benchmarking of physical and numerical quantities and
confirm the validity of newly developed numerical codes.

http://creativecommons.org/licenses/by/3.0


XXXIII International Conference on Equations of State for Matter

IOP Conf. Series: Journal of Physics: Conf. Series 1147 (2019) 012053

IOP Publishing

doi:10.1088/1742-6596/1147/1/012053

2

Figure 1. Spherical shell in the gas flow, the geometry and the mesh of the problem: I is the
inflow gas boundary and O is the outflow gas boundary.

2. Problem formulation

We are considering a spherical shell (shown in figure 1) of external diameter 0.1 m and constant
thickness 0.025 m (internal diameter is 0.05 m) moving with hypersonic speed in the air. The
gas rest properties are given as density ρ0 and temperature T0. The pressure is defined as
P0 = ρ0RspecT0. Inflow velocity on the boundary I is defined as u0 = u(1, 0, 0)T , where constant
u is set by selected Mach numbers of the problem. The outflow boundary O uses sponge zone
in order to perform correct outflow for subsonic and supersonic flow conditions, see [4]. Gas
viscosity is found, using Sutherland’s law [1]. Solid body part consits of graphite with common
properties.

The spherical shell in the volume Ω is meshed with unstructured grid. The geometry and mesh
are divided into two parts by different physical properties—gas dynamics part Ω1 containing all
surrounding air (zone G in figure 2) and solid body part Ω2 (zone T in figure 2). Conditions
on the interface surface ∂Ωw between gas and solid body and numerical values for initial and
boundary conditions are described below. Boundary condition for the heat equation on the
internal spherical shell boundary ∂Ωi is given by the Neumann conditions.

The gas dynamics mesh part contains exponentially contracting boundary layer in the
direction to the external surface of the spherical shell, denoted b (minimum length in the normal
direction is 10−6 m) while solid body part is meshed with either prismatic or tetrahedral grid.
We consider two grid densities: Coarse grid consists of 150 000 elements in the gas dynamics
part and 14 900 elements in the solid body part (tetrahedral grid) while Fine grid consists of
850 000 elements in the G part and 38 500 elements (prism grid) in the T part.
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Figure 2. Spherical shell in the gas flow calculation zones: G stands for the gas dynamics mesh
part, b stands for the gas boundary layer and T stands for the thermal energy and ablation
mesh part.

3. Governing equations

We assume that the gas flow can be governed by continuous mechanics, which is similar to [1–3].
The governing equations in the gas zone are defined as follows:

(ρ)t +∇ · (ρu) = 0,

(ρu)t +∇ · (u⊗ (ρu)) +∇p = ∇ ·Π, (1)

(E)t +∇ · (u(E + p)) = ∇ ·G+∇(Π · u).

Heat equations that are solved for the solid body zone of the spherical shell are

ρmCp(Tm)t = ∇ · (λ∇Tm) . (2)

Here, t is time; ()t is a time derivative; operation · is a dot product, E is a full gas energy; T is
a gas temperature; Π is a viscous stress tensor; p is a pressure; G is a heat flux; u is a velocity
vector; ρ is a gas density; ⊗ designates tensor product; ρm is a density of the solid body material,
Cp is a heat capacity of the material, λ is a heat conduction in the material, Tm is a material
temperature. The code solves two problems with iterative coupling: the solution of (1) for
external flow problem on Ω1 and (2) for internal solid body on Ω2. The flow–wall interface ∂Ωw

is the exchange boundary between two problems. Calculation of heat and mass flux, estimation
of the surface recession rate and re-shaping of surface is performed on the ∂Ωw. The ablating
surface ∂Ωw is considered as moving, the mass flux (m)t is found on this surface, thus a normal
velocity of surface element vn = (m)t/ρm is defined through the solution of equations

qw = f(T, p, q0, . . .), ṁw = f(T, p, q0, . . .). (3)

Here, q0 is the heat flux from the flow (it can include the radiation flux as well). In the paper,
well known model [5] was applied as an example. Shapard’s method [6] was used to deform grid
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in both computational domains Ω1 and Ω2: in the air and in the solid body. More details are
found in [1]. We now present new methods for the solution of the problem.

3.1. Solution of the heat equation

The heat equation (2) is equiped with boundary conditions as described in Problem formulation.
The boundary for ∂Ωw is the Robbin condition defined as

qw = α (Tm,w − Tm,eff) , (4)

where qw = −λ∂Tm/∂nw is the heat flux upon the wall that is defied by (3). The temperature
Tm,w in (4) is found using iterative procedure forming external iterations over the linear solver.
We define α = −dq/dT and Tm,eff = Tm,w − qw (dT/dq).

After the discretization of the heat equation and introduction of time slices n and n + 1
with timestep τ and discrete operator ∇h, one gets the following iterative procedure over the
trapezoidal time implicit method:

T r+1,n+1
m − T n

m = [τ/(2ρmCp)]
(

∇h ·
(

λ∇hT
r,n+1
m

)

+∇h · (λ∇hT
n
m)

)

,
qr+1|∂Ωi

= 0,
qr+1
w = qrw + (dqnw)/(dT )

(

T r+1,n+1
m,w − T r,n+1

m,w

)

,
(5)

where r is the external iteration index. Initial conditions are set for some realistic temperature
value T 0

m. The heat equation in (5) is solved using either the geometric multigrid method [7] or
the Jacobi method. Both can be executed on multiple GPUs.

3.2. Implicit method for gas dynamics equations

Assume that the discretization procedure is applied to (1) and equations are translated into the
discrete form for the given tessellation of Ω1. This procedure (including used numerical schemes
and Riemann solvers) is presented in [2]. Let us rewrite discrete analog of equations (1) for all
mesh elements in the vector form, grouping conservative variables into vector U, inviscid part
into vector F and viscous part into vector H with discrete operator ∇h:

Ut −∇h · (F+H) = 0. (6)

Time explicit method for solving the problem (6) is discribed in [2]. We introduce backwards
Euler time stepping method with time step τ and time slices n and n+1. Then (6) are rewritten
as

Un+1 −Un = τ∇h ·
(

F(Un+1) +H(Un+1)
)

. (7)

Let us designate F(U) , ∇h · (F(U) +H(U)) and introduce nonlinear iterations r as

Un+1,r+1 = Un+1,r + δU. (8)

Sign , means “equality by definition”. Plugging (8) into (7) and linearising near Un+1,r leads
to the following Newton–Raphson method:

{

(E/τr − J) δU =
(

Un −Un+1,r
)

/(τr) + F(Un+1,r),
Un+1,r+1 = Un+1,r + δU,

(9)

where E is an identity matrix and J , (∂F(U)) / (∂U) |Un+1,r is the Jacobi matrix that we
estimate analytically. We omit off-diagonal viscous tensor elements for the Jacobi matrix. This
does not influence order of approximation but only modifies the inclanation of the tangent
hyperplane. We can use (9) to find time dependant solution (by setting τr = τ as a real
physical timestep) or steady state solution. In the latter case τ is used for the continuation
procedure (pseudo-transient continuation) and has no real physical meaning, asymptotically
τr → ∞, r → ∞, see [8]. The main problem of (9) from computational point of view is the ill
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conditioning of the J matrix that results in extremely poor convergence (or even divergence) of
the iterative solution for the linear system. Such poor conditioning of the J matrix is the result
of the nonlinearity of the governing equations and relitively big ratio of the mesh characteristic
length in the boundary layer regions lb to the mesh characteristic length in the free flow regions
lf , yielding lf/lb ∼ 107. We use two different preconditioners: block Lower Upper Symmetric
Gauss–Seidel (LU–SGS) and block Incomplete Lower Upper factorization with 0 fill-in (ILU(0)).
For the first method we use a decomposition on lower triangular, diagonal, and upper triangular
matrices E/τr−J = L+D+U and obtain the preconditioner matrix as M = (L+D)D−1(U+D). Two
full block Gauss–Seidel sweeps are required to get the result of application of inverted matrix on
a vector b defined as m = M

−1b: forward g = (L+ D)−1b and backward m = (U+ D)−1
Dg. The

inversion of a 5× 5 block is done using Gauss–Jordan elimination. For ILU(0) cases we obtain
a preconditioner matrix M

−1 = (L̂Û)−1. Here L̂ and Û are incomplete lower and upper factors.
These factorizations require a solution of the block-tridiagonal linear system. It is solved using
cuSPARSE library from CUDA libraries toolkit. Finaly, the linear system residual r is formed
as

r̂ = (E/τr − J) δU−
((

Un −Un+1,r
)

/τr + F(Un+1,r)
)

,
r = M

−1r̂.
(10)

The linear system residual is supplied to the BiCGStab(L) method [9]. We use L = 3 or L = 5
as optimal dimension of biorthogonal Krylov space. Linear system iterations stop when the
following condition for the norm of the weighted residual ‖rk/ak‖2 ≤ 1 × 10−6, k = 1, ., 5 is
satisfied. Here a is the characteristic length of an element multiplied by the characteristic scale
of conservative variables for each conservative variable (counted by index k).

4. Results

In this paper we present results of a single GPU computation because we still optimize implicit
scheme for multiple GPUs with ILU(0) preconditioner.

4.1. Gas dynamics, heat fluxes and ablation

First we benchmark explicit vs implicit method accuracy on the well known test problem of Peter
Gnoffo [10] of hypersonic flow over a 0.1 m radius sphere with ρ0 = 0.0216 kg/m3, T0 = 300 K,
u = 4167 m/s and Tm = 800 K. Results of the problem solution are presented in figures 3 and
4. Data for the figures is obtained by merging data from multiple sections of the sphere by 12
planes. These planes contain stagnation flow and symmetric points and are orthogonal to the
equator plane. The angle step between planes is π/6. This way we check the spherical symmetry
of the result on the unstructured surface grid.

One can see that the results practically coincide and are almost spherically symmetric. The
L∞ error is 2.2% for both heat flux distribution and shear flux projection modulus. These results
are also very close to those obtained in [10] for regular grid on LAURA code.

We further test the solution of the heat equation and ablation process by setting the following
problem: hypersonic flow over a 0.1 m radius sphere with ρ0 = 0.0001 kg/m3, T0 = 200 K,
u = 10000 m/s and Tm = 700 K, resulting in the Mach number M0 = 30. We validate the
solution of the problem with the previously developed code [1–3]. The physical time of the
simulation is t = 5 s.

The gas dynamics parameters of the flow around the sphere are shown in figure 5. One can
see that the flow is in the extreme conditions, namely, the outflow regime is mostly hyper and
supersonic. Yet there is a small filament of the flow with subsonic regime leaving the outflow
boundary with no visible disturbances. This demonstrates effective application of the sponge
zone at the outflow boundary conditions [4]. We also present heat flux on the surface of the
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Figure 3. Averaged heat flux (H) for explicit (red) and implicit (blue) methods for the Gnoffo
problem as a function of the sphere radius (R).

Figure 4. Averaged shear stress modulus (S) for explicit (red) and implicit (blue) methods for
the Gnoffo problem as a function of the sphere radius (R).

sphere and projection of the stress tensor in figure 6. One can see large magnitude values of
heat flux up to 6.11 MW/m2. Such conditions result in extensive ablation.

Results of the temperature distribution in the solid body and heat ablation are presented in
figures 7 and 8. The maximum linear surface recession is 0.52 cm at the stagnation point of the
flow. The 3D shape of ablation is shown in figure 8, where the initial mesh position is presented
for comparison.

The results that were calculated using the previous version of the code (with utilization of
ANSYS Fluent for heat equation solution and mesh deformation) are identical to the currently
obtained results. Maximum relative error is 2.54×10−7 in temperature difference and 6.23×10−6

in surface position.
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Figure 5. Boundary layer velocity vectors, slices of the velocity vectors and Mach number slice
(log scale).

Figure 6. Heat fluxes on the outer sphere surface and stress tensor projection vectors on the
surface (log scale).
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Figure 7. Spherical shell surface recession in the equatorial section and temperature distribution
inside the solid body of the spherical shell for t = 5 s.

Figure 8. Spherical shell surface temperature and surface recession relative to the initial surface
mesh position for t = 5 s.
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Figure 9. Wall time per timestep for the ANSYS Fluent and the GPU solver execution (using
the Jacobi solver). Ratio is about 20–25 times.

Figure 10. Ratio of wall times to solve the gas dynamics problem to the steady state by the
explicit method to the impicit method.

4.2. Computational efficiency

We divide the computational efficiency into two parts. First, we compare wall time to execute
solution of the heat equation and mesh deformation between ANSYS Fluent on CPU and our
GPU implementation. Results of the relative wall time used for a single time step computation
with respect to the mesh size are provided in figure 9. We can see that we reach up to 23 times
acceleration for a Fine grid setup and 19 times acceleration for Coarse grid setup. This can be
explained by incompete GPU loading.

Second, we compare wall time ratio of the steady state gas dynamics problem solution by the
explicit (using time marching) method to the implicit method. Results are provided in figure 10.
We can notice that the fully implicit method demonstrates good acceleration compared to the
explicit method if we are interested in the steady state solution problem. We obtain up to 12
times acceleration comparing to the explicit method. The timestep τp is selected as maximum
possible for the linear solver to converge. Usually we obtain such timestep, that CFL is up
to 3000–5000. Notice, that further tests must be conducted to draw a solid conclusion on the
effectiveness of the suggested implicit method.
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5. Conclusion

Thus, we have shown that the new implicit methods of a coupled problem solution for hypersonic
gas dynamics around the spherical shell with heat transfer and ablation of the surface are more
efficient for steady state problems than already benchmarked explicit method. For LU–SGS
preconditioner, we obtain 7–8 times acceleration, and for ILU(0) we obtain up to 12 times
acceleration. Both methods obtain correct results in terms of heat fluxes and surface stress for
hypersonic flow regimes. We also show that newly developed GPU orientated solver for the
solution of the heat equation and surface recession during ablation is correct (compared to the
previous implementation in ANSYS Fluent) and more efficient. The acceleration of the solver
for the solid body part is 25 times compared to the ANSYS Fluent implementation. More work
is needed to distribute suggested implicit method across multiple GPUs.
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