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Abstract. In this article, various methods of calculation for the Coulomb logarithm in the
kinetic theory of electron transfer are considered. It is assumed that the interaction of electrons
with ions is described by the Debye potential with a screening constant, which is determined
either with or without the contribution of the ionic component. In order to take into account ion–
ion correlations, the Ornstein–Zernike integral equation in the hypernetted chain approximation
is solved numerically. The behavior of the collision cross section of electrons with ions has been
studied in detail on the basis of the phase shift method.

1. Introduction

In plasma physics and astrophysics, the long-range nature of the Coulomb interaction and the
gravitational one results in the appearance of various kinds of divergent integrals. To eliminate
divergences in considering the kinetic equation, the Coulomb logarithm is introduced into the
transport cross section for scattering of electrons by ions. The determination of this logarithm
in the case of a nonideal plasma occurs with certain difficulties (see for example [1, 2] and the
cited literature there). In the nonideal plasma, the values of the Coulomb logarithm can be
much less than unity. As shown in [3], this leads to an ultrahigh conductivity of gases in the
megabar pressure range. At such pressure, the very application of the kinetic approach raises
questions; therefore, a thorough study of this problem is necessary.

In this paper, we consider various methods for determination the Coulomb logarithm in the
kinetic theory of electron transfer, variants for choosing a screening constant of the plasma with
or without allowance for the contribution of the ionic component, and options for specifying the
boundary value of the electron wave vector that determines the maximum value of the electron
momentum transferred to the ions.

In the first section, the behavior of the collision cross section of electrons with ions has been
studied in detail on the basis of the phase shift method. In the second section, we determine the
transport cross section for scattering of electrons by ions, taking into account the ion correlation
on the basis of the Ornstein–Zernike (OZ) integral equation in the hypernetted chain (HNC)
approximation; the third section contains the results of the numerical calculations and the
discussion of the results.

http://creativecommons.org/licenses/by/3.0
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2. The cross section for elastic scattering of electrons

Differential cross section scattering at the given angles θ and ϕ is defined by the formula

σ (θ, ϕ) = |F (θ, ϕ)|2 , (1)

where F (θ, ϕ) is the total scattering amplitude. The total cross section is

σ =

2π
∫

0

π
∫

0

σ (θ, ϕ) sin θdθdϕ. (2)

The total amplitude of the elastic scattering of electrons is determined by the asymptotic value
of the phase shift of the wave function [4] δl∞ = lim

r→∞

δl (r):

F (θ) =
1

k

∞
∑

l=0

(2l + 1) eiδl∞ sin δl∞ Pl (cos θ) , (3)

where Pl (cos θ) are the Legendre polynomials, k is the wave number of a particle with the
reduced mass m: k = mv/~, v is the particle velocity. For a collision of an electron with an ion,
the reduced mass practically coincides with the electron mass me, while the particle velocity
with reduced mass m coincides with electron velocity. From equations (2) and (3), for total
scattering cross section one can obtain [4]

σ =
4π

k2

∞
∑

l=0

(2l + 1) sin2δl∞. (4)

The phase shift function is a solution of the differential equation [5–9]:

dδl (r)

dr
= −1

k

2me

~2
V (r)

[

jl (kr) cos δl (r)− nl (kr) sin δl (r)
]2

(5)

with the initial condition

δl (r = 0) = 0, (6)

where ~ is the reduced Planck’s constant, jl, V (r) is the interaction potential, nl are the Riccati–
Bessel functions (they differ from the spherical Bessel functions in that they are additionally
multiplied by an argument).

The electron–ion interaction is described by the Debye potential

V (r) = −e2zi
r

e−ksr, (7)

where ks is the screening constant, ezi is the ion charge.

2.1. Approximate solution for the Debye potential

In order to find the approximate solution of equation (5) for small values of the phase function,
we rewrite (5) in the following form:

d tan δl (r)

dr
= −1

k

2me

~2
V (r) [jl (kr)− nl (kr) tan δl (r)]

2. (8)

Neglecting the phase tangent in square brackets, from (8) we find the first approximation:

tan δl (r) = −1

k

2me

~2

r
∫

0

V (r)j2l (kr) dr = −α

k

r
∫

0

e−ksr

r
j2l (kr) dr, (9)
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where α is the quantity with the dimension of the reciprocal length and is determined by the
relation

α =
2mee

2zi
~2

.

For the phase shift, using the value of the improper integral [10]

∞
∫

0

[

Jl+1/2 (kr)
]2
e−ksrdr =

1

πk
Ql

(

1 +
k2s
2k2

)

, (10)

from (9) we get

tan δl (∞) = − α

2k
Ql

(

1 +
k2s
2k2

)

≡ −e2zik

2εe
Ql

(

1 +
k2s
2k2

)

. (11)

Here Qk is the Legendre function of the second kind, εe is the electron energy: εe = ~
2k2/2me.

Now taking into account the sum [11]

∞
∑

k=0

(2k + 1) [Qk (x)]
2 =

1

x2 − 1
, (12)

for the elastic collision cross section of an electron with an ion, provided that the phase shift is
small from (11) we get

σ =
πe4z2i
ε2e

k2

k2s

4k2

4k2 + k2s
≡ 4πα2

k2s (4k
2 + k2s)

. (13)

2.2. The Born approximation

In the Born approximation, the elastic scattering amplitude is given by [4]

fB = − m

2π~2

∫

U(r)e−iqrdr, (14)

where q = k−k′, q = 2k sin θ
2 , θ is the angle between the vectors k and k′, which is a scattering

angle, k, k′ are the wave vectors of the initial and scattered electrons: k = p/~, U(r) is the
interaction potential. In order to apply the Born approximation, at least one of the following
two conditions must be fulfilled:

|U | ≪ ~
2

ma2
or |U | ≪ ~v

a
, (15)

where a is the characteristic radius of U(r), |U | is the order of its magnitude in the main area of
its action. When the first condition is met, the Born approximation is applicable at all velocities,
and the second one only at sufficiently high velocities.

For the Debye potential (7) for the elastic scattering amplitude from (14) we get

fB = − α

k2s + 2k2 (1− cos θ)
. (16)

The differential scattering cross section in the Born approximation in the case of the Debye
potential is obtained by the formula

σ (θ) =
α2

[k2s + 2k2 (1− cos θ)]2
. (17)

By integrating (2) with (17), for the total cross section, we arrive at (13). Consequently, the
first approximation (9) corresponds to the Born approximation.
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2.3. The semiclassical approximation

For large l, the motion is quasiclassical, therefore, the phase of the wave function is determined
by the difference in the phase incursions when moving with and without the field U(r) [4]:

δl =

∞
∫

kr1

√

1− (l + 1/2)2

x2
− 2meU (x/k)

k2~2
dx−

∞
∫

kr2

√

1− (l + 1/2)2

x2
dx, (18)

where x = kr, r1, r2 are the roots of the radicands (area r > r1(2) is the classically accessible
motion area):

k2 − (l + 1/2)2

r21
− 2meU (r1)

~2
= 0, r2 =

l + 1/2

k
. (19)

In the case of the Debye potential

δl =

∞
∫

kr1

√

1− (l + 1/2)2

x2
+

αe−βx

kx
dx−

∞
∫

kr2

√

1− (l + 1/2)2

x2
dx (20)

and r1 is defined by the expression

k2r21 + αr1e
−ksr1 − (l + 1/2)2 = 0.

For large l, the values of r1 and r2 are also large, therefore, U(r) is small in the entire domain
of integration and r1 ≈ r2 with high accuracy. In this case, from (18) one can get an approximate
expression [4]:

δl =
me

~2k2

∞
∫

(l+1/2)

U (x/k)
√

x2 − (l + 1/2)2
xdx = − α

2k

∞
∫

(l+1/2)

e−βx

√

x2 − (l + 1/2)2
dx. (21)

2.4. Numerical calculations of the cross section

Figure 1 shows the dependence of the phase function on the distance for different values of the
orbital angular momentum l with energy εe = 1 eV. Number densities of electrons and ions
ne0 = ni0 = 1016 cm−3 (zi = 1), temperature T = 300 K. As a screening constant, we used the
complete Debye constant:

ks = kD ≡
[

4πe2ne0 (1 + zi)

T

]1/2

.

Figure 2 demonstrates partial cross sections as functions of the orbital angular momentum at
ne0 = ni0 = 1016 cm−3 (zi = 1), T = 300 K. One can see that the total cross sections calculated
by the method of phase functions and in the Born approximation are in good accordance.

Table 1 compares the total cross sections for elastic scattering at different electron energies
calculated by the different methods described above. It is seen that at high energies εe ≫ T
all four methods give practically identical cross sections, but as the energy decreases, the
discrepancies grow. We draw attention to the fact that a quasiclassical method with allowance
for the mismatch of the turning points of an electron moving in a force field and without it yields
the closest cross sections to the exact values obtained by the phase–function method (18). From
table 1 it is also seen that the accuracy of the Born approximation decreases with decreasing
the electron energy due to the violation of the conditions of its applicability.
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Figure 1. Phase functions of electron elastic scattering by ions with the Debye potential for
different orbital numbers l as a function of the reduced radial coordinate at the electron energy
εe = 1 eV, electron and ion number densities ne0 = ni0 = 1016 cm−3 (zi = 1) and the temperature
T = 300 K.

Figure 2. Partial cross sections as a function of the orbital number for ne0 = ni0 = 1016 cm−3

(zi = 1), T = 300 K at εe = 10−2 (1 ), 0.1 (2 ) and 1 eV (3 ). The solid curves have been obtained
by the phase shift method, the symbols with thin lines have been calculated within the Born
approximation.

3. Transport cross section for elastic scattering of electrons

To describe the transfer of light particles to a heavy particle, the Lorentz approximation [12]
can be used. In this case, the integral of the electron–ion collisions takes the simple form of [12]
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Table 1. The total cross sections σ (in cm2) of electron elastic scattering by ions with taking into
account the partial cross sections for orbital numbers up to lmax = 60 at ne0 = ni0 = 1016 cm−3

(zi = 1) and T = 300 K.

εe, eV 10−3 10−2 10−1 1

The phase-function method (4) 1.91× 10−10 9.36× 10−11 4.80 × 10−11 2.23 × 10−11

The Born approximation (13) 1.46× 10−10 7.76× 10−11 4.71 × 10−11 2.23 × 10−11

The semiclassical approach (18) 1.87× 10−10 9.52× 10−11 4.80 × 10−11 2.23 × 10−11

The semiclassical approach (21) 1.22× 10−10 7.86× 10−11 4.72 × 10−11 2.23 × 10−11

equation Stf = −νeiδf , where νei is the transport frequency: νei = nivσtr; σtr is the transport
cross section, δf is the deviation of the distribution function from the equilibrium, v is the
electron velocity. The transport cross section is defined by the formula

σtr =

2π
∫

0

π
∫

0

(1− cos θ)σ (θ) sin θdϕdθ (22)

and in the Born approximation we have

σtr =
m2

2π~4

π
∫

0

(1− cos θ)

∣

∣

∣

∣

∫

U (r) e−iqrdr

∣

∣

∣

∣

2

sin θdθ. (23)

Taking into account the ion correlations, the interaction potential of electrons with Ni ions in
the volume V is determined as follows:

U (r) =
∑

i

Uei (r−Ri), (24)

where the summation is performed for all ions with coordinates Ri, Uei is the electron–ion
interaction potential. For the Fourier transform of the potential (24) per ion, we find

Uk,k′ = Uqei
1

Ni

∑

i

e−iqRi , (25)

where

Uqei =

∫

Uei (r) e
−iqrdr.

For the square of the Fourier transform of the potential, we have

∣

∣Uk,k′

∣

∣

2
= U2

qei

∣

∣

∣

∣

∣

1

Ni

∑

i

e−iqRi

∣

∣

∣

∣

∣

2

= U2
qeiSi (q) , (26)

where Si (q) is the static structure factor (SSF)

Si (q) =

∣

∣

∣

∣

∣

1

Ni

∑

i

e−iqRi

∣

∣

∣

∣

∣

2

= 1 +
Ni

V

∫

[g (r)− 1]
sin (qr)

qr
4πr2dr. (27)

In the case of the Debye potential (7) we get

Uqei =
4πe2zi
q2 + k2s

,
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so as a consequence

∣

∣Uk,k′

∣

∣

2
=

16π2e4z2i
(q2 + k2s)

2Si (q) . (28)

By substituting of (28) to (23), we get

σtr =
4πm2e4z2i

~4k4

2k
∫

0

Si (y)

(y2 + k2s)
2 y

3dy. (29)

Let us consider the case when the ion correlations can be neglected: Si = 1. In this case from
(29) we obtain (see [13,14])

σtr =
2πm2e4z2i

~4k4

[

ln

(

1 +
4k2

k2s

)

− 4k2

4k2 + k2s

]

. (30)

From equation (30) we see that the transport cross section in the Born approximation has no
singularities, which is well known. But, as noted above, the Born approximation has limited
applicability, so equation (30) needs to be clarified.

In works [15–19], Ziman introduced and actively used the concept of the “atom” as an ion
with a shielding electron cloud to describe electron transport properties of metals. In this case,
the electron scattering occurs on such an “atom” with a pseudopotential equal to the screened
Debye one, and the interaction of “atoms” with each other is described by the same potential.
In [15–19], it was assumed that only electrons participate in the screening, the randomness or
ordering of the arrangement of “atoms” or simply ions is taken into account by the static
structure factor. This theory was very successful in describing the transport properties of
electrons in various metals and their alloys, so in this paper we use the same approach.

The electron screening in a plasma is generally determined by the expression [12,14]:

k2De =
8πe2

T

1

λ̄3
e

F−1/2 (ηe) , (31)

where T is the electron temperature, ηe = µe/T , µe is the chemical potential of the electron gas,
F−1/2 (ηe) is the Fermi–Dirac integral defined by the relation [20]:

Fk (ηe) =
1

Γ (k + 1)

∞
∫

0

xkdx

ex−ηe + 1
, (32)

Γ (x) is the gamma function. The number density of electrons is

ne =
2

λ̄3
e

F1/2 (ηe) . (33)

By combining (31) and (33), we get

k2De = k2De,0

F−1/2 (ηe)

F1/2 (ηe)
, (34)

where kDe,0 is an electronic screening constant in the nondegenerate case:

k2De,0 =
4πe2ne

T
. (35)

It is important to highlight that at room temperature and ne . 1018 cm−3 the electron screening
constant is practically the same as (35) (figure 3), but in the strongly degenerate case

k2De =
mee

2

π2~2

(

3ne

π

)1/3

. (36)
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In calculating, the reduced chemical potential ηe was found from (33) using the given electron
number density ne, then from (31) or (34) the screening constant kDe was determined. The
Fermi–Dirac integrals were calculated according to [20]. Here we also give an expression for the
mean kinetic energy of electrons

〈εe〉 = 3
2T

F3/2 (ηe)

F1/2 (ηe)
. (37)

In the nondegenerate plasma 〈εe〉 = 3
2T , and in the strongly degenerate plasma 〈εe〉 = 3

5εF ,
where εF is the Fermi energy:

εF =
(

3π2ne

)2/3 ~
2

2me
. (38)

The transport cross section for electron scattering by ions with allowance for the ion–ion
correlation is defined by the expression [21]

Qei (εe) =
πz2i e

4

ε2e
Λei, (39)

where εe is the electron energy, Λei is the Coulomb logarithm

Λei =

qm
∫

0

k3

(k2 + k2s)
2 Si (k) dk, (40)

qm is the maximum value of the wave vector (determined by the maximum value of the
electron momentum transferred to the ion in the collision). In [15], it was assumed that
qm = 2kF (for an electron on the Fermi surface, the maximum value of the momentum transfer
is 2~kF = 2

√
2meεF ), where kF is the wave number of an electron on the Fermi surface:

kF =
(

3π2ne

)1/3
. (41)

In [3] it was assumed that

qm = min
{

ET /zie
2, 2/λ̄e

}

, (42)

where it was supposed that ET was equal to the temperature (in energy units) in the
nondegenerate case and to the Fermi energy in the degenerate case; the de Broglie wavelength
in these cases was also determined using the Fermi energy or temperature.

In a rarefied plasma, when the ion–ion correlations can be neglected, Si ≈ 1. In this case, we
find from (40) (see [13,14])

Λei =
1

2

[

ln (1 + χi)−
χi

1 + χi

]

, (43)

where χi = (qm/ks)
2.

In this paper, in order to determine the structure factor of ions, the OZ equation in the HNC
approximation [22–24] is solved numerically:

h (r) = C (r) + ni

∫

h (r1)C (|r− r1|) dr1, (44)

where g(r) = 1+h(r) is the pair correlation function, C(r) is the direct correlation function, ni is
the ion number density. In order to close the OZ equation, we use the HNC approximation [25]:

C (r) = exp

[

−Uii (r)

T
+ γ (r)

]

− γ (r)− 1, (45)
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where Uii (r) is the interaction potential of the particles under consideration, γ (r) = h (r)−C (r).
In our case, the Debye potential (7) is used to describe the ion interaction. The HNC
approximation turns out to be sufficiently accurate to describe the Coulomb systems and a
system of particle interacting by the Debye potential (see, for example, [26]).

The OZ equation is solved by the iterative method [27,28], and the values of the SSF in the
Debye approximation are used as the initial solution. We used the procedure proposed in [29]
to speed up the convergence.

4. Numerical calculations and discussion of the results

In this paper, we consider two variants for determining the Debye screening constant taking into
account,

ks = kD ≡
√

k2De + k2Di,

and without taking into account the contribution of the ionic component, ks = kDe. The value
of the boundary wave number qm is specified either as in [3]

qm = qmS ≡ min

(

r−1
0

√

1 + (εF /T )
2, 2kE

)

, (46)

or as the inverse Landau radius in a nondegenerate plasma with a transition to 2kF in a
degenerate plasma (as in [15]):

qm = qmZ ≡
√

r−2
0 + 4k2F . (47)

Here kE is the wave number determined from the mean kinetic energy of electrons (37)

kE =

(

10

3

〈εe〉me

~2

)1/2

, (48)

which in a strongly degenerate case becomes the wave number of an electron with the Fermi
energy. As a result, in this paper, calculations have been made for four variants of the choice of
the maximum value of the wave number and the choice of the screening constant: for variant 1
we set ks = kDe and qm = qmZ; for 2—ks = kD and qm = qmZ; for 3—ks = kDe and qm = qmS;
for 4—ks = kD, qm = qmS.

Consideration of the different variants for choosing the constant screening and the boundary
value of the wave number is due to the following fact. As noted above, in a number of papers
the electron screening constant is used as a screening constant. Such a choice is suitable for
metals in which the ions are located at the sites of the crystal lattice, but in the case of a plasma
with not too high values of the nonideality parameter (figure 4, which shows an increase of the
order of the ion distribution in the growth of Γ), the ionic component also takes part in the
screening of the electric field of the ions. Also, the choice of the boundary value of the wave
number equal to 2kF for metals is clear, in which the transfer is carried out mainly by electrons
with the energy near the Fermi surface, whereas this choice is open to question in the case of
plasma.

It is seen from figure 3 that the value qmS, coinciding at small electron number densities with
the classical inverse Landau radius, at the number density of the order 1019 cm3 tends to a
value equal to the inverse Landau radius determined with the Fermi energy as the temperature,
and then tends to 2kF for the number density of the order of 1025 cm−3. We note that the
behavior of qmS is very close to the behavior of the inverse Landau radius calculated using the
mean kinetic energy 〈εe〉 instead of the temperature (see curve 7 in figure 3). The value of qmZ

coincides with r−1
0 for small number densities, and tends to 2kF as the number density increases.
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Figure 3. The dependencies on the electron number density of the main plasma parameters
with the inverse length dimension, which define the boundary wave number qm at T = 300 K and
zi = 1: the inverse Landau length r−1

0 = T/
(

e2zi
)

(1 ), the inverse Landau length with the Fermi

energy εF instead of the temperature: r−1
0 = εF /

(

e2zi
)

(2 ), qm = 2/λ̄e (3 ), qm = 2kF (4 ), kDe

(5 ), kDi (6 ), the inverse Landau length with the mean electron energy 〈εe〉: r−1
0 = 〈εe〉/

(

e2zi
)

(7 ), qm = qmS (46) (red solid line with magenta triangles), and qm = qmZ (47) (black solid line
with cyan circles).

It is also seen from figure 3 that at room temperature the degeneracy begins to affect the
electron Debye radius at ne > 1018 cm−3, and the electron screening constant becomes noticeably
smaller than the ion one.

Figure 4 shows the dependencies of the two–particle correlation function and the ion–ion
static structure factor with the ionization multiplicity zi = 1 for T = 300 K on r/a and ka for
different values of the nonideality parameter Γ, which is defined by the expression

Γ =
e2z2i
aT

, a =

(

3

4πni

)1/3

. (49)

The Coulomb logarithm (40) is calculated by using similar dependencies of the static structure
factor. Usually, the inequality kmax > qm is fulfilled, but if it is violated, then Si = 1 is assumed
in the range kmax < k 6 qm, where kmax is the maximum value of the wave number in the
calculations of the static structure factor.

Figure 5 shows the dependencies of the Coulomb logarithm on the electron number density
for vatiant 1. We see that Λei decreases with increasing ne and passes through the minimum
at ne ∼ 1019 cm−3. Curve 2 calculated for Si = 1 behaves similarly, so we can conclude that
the appearance of a minimum is not connected with the variations of SSF with a change in the
ion number density. From the comparison of curves 1 and 2 we can conclude that taking into
account the ion correlation contributes to the Coulomb logarithm already at ne ∼ 1012 cm−3,
but this contribution becomes especially noticeable at ne > 1020 cm−3, when the allowance
for the correlation of the ions is necessary and leads to a noticeable decrease in the electron
scattering cross section.



XXXIII International Conference on Equations of State for Matter

IOP Conf. Series: Journal of Physics: Conf. Series 1147 (2019) 012101

IOP Publishing

doi:10.1088/1742-6596/1147/1/012101

11

(a)

(b)

Figure 4. The radial distribution functions (a) and the static structure factors (b) at T = 300 K
and zi = 1 for different values of the nonideality parameter: Γ = 4.2× 10−3 (1 ), 0.416 (2 ), 89.7
(3 ), 193 (4 ), 416 (5 ), and 897 (6 ).

In figure 6 numerical calculation results by four above mentioned variants are compared. It
can be seen that in the calculations within the variant qm = qmS the values of the Coulomb
logarithm are significantly less than in calculations within the variant qm = qmZ . The values
of Λei also turn out to be smaller in calculations within the variant ks = kD than within the
variant ks = kDe. As can be seen in figure 6, allowance for the ion correlation is important only
in calculations without allowance for the screening by ions. A similar picture is observed in the
calculations for T = 300, 1500 and 3000 K.
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Figure 5. The Coulomb logarithm as a function of the electron number density for zi = 1 in
variant 1 with qm = qmZ and ks = kDe at T = 300 (1 ), 1000 (2 ) and 3000 K (3 ). The solid
curves are obtained by numerical integration of (40) with the SSF from the HNC OZ equation,
dash curves are calculated from equation (43).

Figure 6. The Coulomb logarithm as a function of ne for zi = 1 and T = 5000 K for variant
1 with qm = qmZ and ks = kDe (1 ), variant 2 with qm = qmZ and ks = kD (2 ), variant 3 with
qm = qmS and ks = kDe (3 ), and variant 4 with qm = qmS and ks = kD (4 ). The solid curves
are from (40) with the SSF from the HNC OZ equation, dash curves are from equation (43).

5. Conclusion

In this paper, the different methods of calculation of the differential cross section of electrons
scattering by ions have been considered, that is the method of phase functions, the Born and
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semiclassical approximations, as well as various methods for determining the Coulomb logarithm
in the kinetic theory of electron transport, the different choice of constant plasma screening with
or without the contribution of ionic components and the different choice of boundary values of
the wave vector of electrons. The Ornstein–Zernike integral equation in the hypernetted chain
approximation has been solved numerically to take into account the ion–ion correlations. It has
been shown that there are values of the Coulomb logarithm much less than one that requires
a more careful study of the definition of the transport section of electron scattering in strongly
coupled plasmas.
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