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Abstract. Movtivated by the idea of Barzilai and Borwein (BB) method, we introduce a 
concept of  approximately optimal stepsize and present a new gradient method with 
approximately optimal stepsize for unconstrained optimization. We construct a new quadratic 
approximation model  to  generate an  approximately optimal   stepsize.   We then use the two  
BB stepsizes to truncate it and treat the resulted approximately optimal stepsize as the new 
stepsize for gradient method.  Moreover, for the nonconvex case, we also design two 
approximate models  to generate approximately  optimal stepsizes for gradient method.  We 
analyze the convergence of the proposed method. The numerical results  show that the 
proposed method  is  very promising.  

1.Introduction  
Consider the following unconstrained optimization problem: 

min ( )
nx R
f x

∈
,                         (1) 

where : nf R R→ is continuously differentiable and its gradient is denoted by g . 
 Throughout this paper, ( ),k kf f x= ( )k kx=g g  
and .  denotes the Euclidean norm. 
The gradient method takes the form: 

1 ,k k k kα+ = −x x g  
where kα is the stepsize. It is accepted widely that the steepest descent method, where the stepsize is 
determined by 

     
0

arg min ( ),SD
k k kf x

α
α α

>
= − g               (2)             

 is badly affected by ill conditioning and thus converges very slowly. Since the  BB method [1] was 
proposed   by  Barzilai and Borwein in 1988, the interest for the gradient method  has been renewed. 
The BB method is in essence a gradient method, the stepsize  of which  is  given by 

1 2

2
1 1 1

2
1 1 1

or ,
T

BB BBk k k
k kT

k k k

α α− − −

− − −

= =s s y
s y y
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where 1 1k k ks x x− −= − and 1 1k k ky g g− −= − . 
Due to its simplicity, numerical efficiency and low storage,  the BB method has enjoyed  great 

developments in the past decades [2,3]. Raydan [4] extended the BB method to unconstrained 
optimization by incorporating the nonmonotone line search (GLL line search) [5], and the numerical 
results in [4] showed that the  BB method was competitive to several famous conjugate gradient 
algorithms. Many BB-like method has been developed  [6-9]. 

Since the stepsize SD
kα is not efficient for gradient method, we introduce a class of stepsize called 

approximately optimal stepsize [10] for gradient method. 
Definition 1 Suppose that f is continuously differentiable and ( )kφ α  is an approximate model 

of ( )k kf x gα− .  A  positive constant *α  is called approximately optimal stepsize associated to  

( )kφ α  for gradient method,  if *α  satisfies *

0
arg min ( ).kα

α φ α
>

=  

It is clear that the effectiveness of approximately optimal stepsize will rely on the approximate 
mode ( )kφ α greatly. Can one develop more suitable approximate model to generate efficient 
approximately optimal stepsizes? The is the purpose of the paper. 

In this paper, we  present a  efficient  gradient method  with approximately optimal stepsize for 
unconstrained optimization. If 1 1 0T

k k− − >s y , we construct a new quadratic approximate model to 
generate an   approximately optimal  stepsize, and use the two well-known BB stepsize to truncate it 
and treat the resulted approximately optimal stepsize as a new stepsize for  gradient method. 
Otherwise,   we also design   two new approximate models to derive two efficient  approximately 
optimal  stepsizes for gradient method. We also analyze the global convergence of the proposed 
method. We illustrate some numerical  results which show that the proposed method is not only 
superior to the BB method and the SBB4 method [9]  but also is competitive to two well-know 
software CG_ DESCENT (5.3) [11] and CGOPT [12] for the given test problem set.  

The rest of this paper is organized as follows. In Section 2, we exploit some different approximate 
models to generate some approximately optimal  stepsizes.  In Section 3, we present an efficient 
gradient method  with approximately optimal stepsize for unconstrained optimization, and prove the 
convergence of the proposed method. In Section 4, we do some numerical experiments to examine the 
effectiveness of the proposed method. Conclusions  are given in the last section.  

2.Derivation of Approximately Optimal  Stepsize  
In this section we develop several approximate models  to generate some approximately optimal  
stepsizes for gradient method.  

Case I   1 1 0T
k k− − >s y  

Consider the following quadratic  model: 
1 2 21( ) ( ) ,

2
T

k k k k k kf x Bφ α α α= − +g g g   

where kB  is a symmetric and positive definite  approximation to the Hessian matrix. Taking care of 
computational cost, storage cost and approximate effect,   kB  is generated by imposing the BFGS 
formula [13] on a scalar matrix k Iλ , where 0kλ > . Clearly, the scalar kλ  will have an important 
influence on the effectiveness of approximately optimal stepsize. Based on the idea of the BB method, 

we use the combination of  
1

1
BB
k

I
α

and
2

1
BB
k

I
α

 : 

2
1 1 1

2
1 1 1

(1 ) ,  
T
k k k

k k k T
k k k

D t t I− − −

− − −

 
= − + 
 

s y y
s s y
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to approximate the Hessian matrix, where [ ]0,1kt ∈ .  Clearly,  the choice of kt  is  key to the 

approximate effect of the Hessian matrix.  In this paper, we determine  kt  as 
2

21 1
2 12 2

1 1

1 1

1 1

( ) , if

, otherwise

,

,

T
k k

k
k k

k T
k k

k k

t
ξ− −

− −

− −

− −


≤

= 



s y g
s y

s y
s y

 
   

   

 

where 1 0ξ > . 
It is well-known that the secant equation 1 1k kkB − −=s y  is the core  of  quasi-Newton methods.  

However, the standard secant equation  is not true for the kD  generally. It is accepted that the scalar 
matrix kD  is too  simple  to approximate the Hessian matrix very well.  Therefore, in order to allow 

kD   to satisfy the  secant equation,  we  update kD   by the BFGS update formula   

1 1 1 1

1 1 1 1

T T
k k k k k k

k k T T
k k k k k

D DB D
D
− − − −

− − − −

= − +s s y y
s s s y

 

It is clear that if 1 1 0T
k k− − >s y , then kB  symmetric and positive definite and satisfy the secant 

equation.  

Imposing 
1

0kd
d
φ
α

= , by the positive definiteness of kB we obtain the approximately optimal  

stepsize: 

( )

2
(1)

2 2 2
21 1 1 1 1

2 2
1 1 1 1 1 1

.
( ) ( )1

AOS k
k T T T

k k k k k k k
k k kT T

k k k k k k

t t
α

− − − − −

− − − − − −

=
  

− + − +  
  

g
s y y g s g yg

s s y s s y

 
   

   

 

It is observed that the bound 2 1,BB BB
k kα α   for the  approximately optimal  stepsize (1)AOS

kα  is very 

preferable  in the numerical experiments. Together with the success of the BB stepsizes 1BB
kα  and 

2BB
kα , it is reasonable  to impose the bound  2 1,BB BB

k kα α    on the  approximately optimal  stepsize 
(1)AOS

kα .  As a result,  in practice we take the truncated   form of the approximately optimal  stepsize 
(1)AOS

kα : 

{ }{ }1 2(1) (1)min ,max ,BB BBAOS AOS
k k k kα α α α=   (3) 

as the new stepsize for gradient method. 
 Case II  1 1 0T

k k− − ≤s y  

When  1 1 0T
k k− − ≤s y , in most BB-like methods  the  stepsize is set simply to 3010kα = . It is too 

simple to cause expensive computational cost for searching a suitable stepsize for gradient method.  
Suppose for the moment that f  is twice continuously differentiable, let us consider  the second 

order Taylor  expansion: 
2 2 21( ) ( ) ( ) ( ).

2
T T

k k k k k k k kf x f x f x oα α α α− = − + ∇ +g g g g g For a small 0kτ > , denote 

( )( )
.

T
k k k k k

k
k

x
ρ

τ
τ

−
=

−g g g g
         (4) 
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We  use kρ  to approximate 2 ( )T
k k kf x∇g g , which implies a new approximate model :  

2 21( ) ( ) .
2

T
k k k kk f xφ α α ρα= − +g g    

Similarly, by imposing 
2

0kd
d
φ
α

= , we  obtain the approximately optimal stepsize: 

(2) .
T

AOS k k

k
kα

ρ
= g g

 

To obtain  the  stepsize (2)AOS
kα ,   it  has the cost of an extra gradient evaluation, which may result 

in great computational cost if the gradient evaluation is evoked frequently. To avoid this case,  we turn  
to consider 1.kg −  Since 

2
1 1 1 1 1 1 1 1( ) ( ) 0,T T T

k k k k k k k k k kα α− − − − − − − −= − − = − <s y g g g g g g   

we have that 2
1 1 ,T

k k k− −≤g g g  which implies that  

1 1.k

k

− ≤g
g

 
 

 

If 
2

1
2

k

k

−g
g

 
 

 is close to 1, we know that kg  and  1kg −  will incline to be collinear and  kg   and 

1k−g   are approximately equal. Thus, if 
2

22
1

k

k

ξ
−

≥g
g
 
 

and  1 3kα ξ− <                (5) 

hold, where 2 0ξ > and 3 0ξ > , we obtain that  
2 2 1 1 1

1 1
1

[( ( ) ( )]( ) ( ) ,
T

T T k k k k k
k k k k k k

k

x xf x f x α
α

− − −
− −

−

+ −∇ ≈ ∇ ≈ g g g gg g g g  

which also implies  a new approximation model: 
3 2 2 1 1 1

1

| ( ( ) ( )) |1( ) ( ) .
2

T
k k k k k

k k k
k

x xf x αφ α α α
α

− − −

−

+ −= − + g g g gg     

Similarly, we obtain the approximate optimal stepsize:   
2

(3) 2
1

1 1

.
| |

AOS k
k kT

k k

α α −
− −

= g
s y
 

 

When 1 1 0T
k k− − =s y , the stepsize kα is set according to the stepsize 1kα −  at the latest iterate. It is 

well-known that for a quadratic function  the stepsize 1BB
kα  is exactly equal to the exact  stepsize at the 

latest iterate, that is, 

1 1 1
1

1 1

.
T

BB SDk k
k kT

k k

α α− −
−

− −

= =s s
s y

 

Moreover, it also has been shown that if 1BB
kα  or SD

kα  is  
reused in a cyclic fashion, then the convergence rate is accelerated. It seems that the stepsize 1kα − may 
provide 
some important information for the current stepsize. Therefore, when  1 1 0T

k k− − =s y , we set the  
stepsize to  

1,  k kα δα −=                 (6) 
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where 0δ > . Besides, if 0kρ = , the stepsize is also computed by (6). 

Therefore, when 1 1 0T
k k− − ≤s y , the  stepsize can be stated as follow: 

2 2

22
1

2 2
1

1 1
1 1

1

0 and ,, if 

, if 0,
| |

, therwise

(5) hold and

o ,

k k
k

k k

Tk k
k k kT

k k

k

ρ ξ
ρ

αα

δα

−

−
− −

− −

−

≠


<

= ≠





g g
g

g s y
s y

   
 

 
     (7) 

where kρ is given by (4). 

3.Gradient Method with Approximate Optimal Stepsize 
We present an efficient gradient method with approximately optimal stepsize for unconstrained 
optimization. Although  GLL line search [5] was firstly incorporated into the BB method, it is 
observed by numerical experiments that the nonmonotone line search (Zhang-Hager line search) [14] 
is more preferable for BB-like methods.  As a result,  we adopt Zhang-Hager line search.     

  Algorithm 1 (GM_AOS)   
Step 0 Initialization: Let 0

nx R∈ , 0,ε > 0 1,Q =  

0 0 ,C f= 0
0α , ,min maxλ λ , 1 2 30, , , , ,kσ ξ ξ ξ τ δ> , and set : 0;k =  

Step 1 If k ε
∞

≤g , stop;  

Step 2 If 0k = , set 0
0α α= ,  go to Step 3.  If  1 1 0T

k k− − >s y  , compute  kα  by (3). Otherwise 

compute kα  by (7). Set { }{ }0
max minmax min , ,k kα α λ λ= and 0

kα α= . 
Step 3 Zhang-Hager line search. If 

2( ) ,k k k kf x Cα σα− ≤ −g g   
then go to Step 4. Otherwise, update  α   by [15] 

0 0, if 0.1 and [0.1 ,0.9 ],
0.5 , otherwise,

k kα α α α α αα
α

 > ∈
= 


  where α   is the trial stepsize obtained by a 

quadratic     
interpolation at  kx  and k kx α− g , go to Step 3. 

Step 4  Set 1kη =  and update 1 1,k kQ C+ +  by the following ways:   

1 1 1 11, ( ( )) ./k k k k k k k k kQ Q C Q C f x Qη η+ + + += + = + Step 5 Set kα α= , 1k k k kx x α+ = − g , 
1k k= + , 

 and go to Step 1. 
Now we turn to the global convergence of the GM_AOS under the following assumption:  
A1 f  is bounded on the set 0{ | ( ) ( )}x f x f xΩ = ≤ ; 

A2 f  is bounded below on nR  ; 
A3 g  is Lipschitz continuous, i.e. there exits a positive constant  L  such that 

( ) ( ) , , .nx L x x R− ≤ − ∀ ∈g g y y y     

Lemma 3.1    Let 
0

1
1

k

k i
i

A f
k =

=
+  , we have 

.k k kf C A≤ ≤  
 Proof    The proof can be found in Lemma 1.1 of [14].   
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Since  k kd g= − , it is obvious that  2T
k k k= −g d g   and 2 2

k k=d g      for all 0k ≥ .By  
Theorem 2.2 of  [14], we obtain the convergence of the  GM_AOS. 

Theorem 3.1 Suppose that assumptions A1, A2 and A3 hold. Then, we have  lim inf 0kk→∞
=g  .  

4.Numerical Results 
In this  section we do some numerical experiments to examine the effectiveness of GM_AOS. The 
standard test function set  includes 80 unconstrained problems which are mainly from [16]. The BB 
method,  the SBB4 method CG_DESCENT (5.3) and CGOPT are also chosen to be compared with 
GM_AOS, and the  codes  of  CGOPT and CG_DESCENT (5.3) can be downloaded from  
http://coa.amss.ac.cn/wordpress/?page_id=21 and  http://users.clas.ufl.edu/hager/papers/Software, 
respectively.   

 
Figure 1. Performance profile based on iterN  

 
Figure 2. Performance profile based on fN  

    All codes are run on PC with 3.20 GHz CPU processor, 4 GB RAM memory and Windows 7 
operation system.  We choose the following parameters for GM_AOS: 

6 410000, 10 , 10 ,n ε σ− −= = = 3010 ,minλ −= 3010 ,maxλ = 4 1
1 2 310 , 10 , 0.85,ξ ξ ξ− −= = =

( )1min 0.1 ,0.01k kτ α −= .  The BB method and the SBB4 method also use Zhang-Hager line search.  

All test methods are stopped  if  the number of iterations  exceeds 50000 or 610k
−

∞ ≤g   is satisfied, 
and GM_AOS, the SBB4 method and the BB method are also stopped if the number of function   
evaluations  exceeds 80000.  CG_DESCENT (5.3) and CGOPT  use the default parameter  values   in 
their codes expect the above stopping conditions.  

The performance profile introduced by Dolan and More  [17] is used to display the performance of 
the test methods. 
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Figure 3. Performance profile based on Ng  

 
Figure 4. Performance profile based on cpuT  

We divide the numerical experiments into two groups. In Figs. 1-6, iterN , fN , Ng and 

cpuT represent the number of iterations, the number of function evaluations, the number of gradient 
evaluations and CPU time (s), respectively. 

In the first group of the numerical experiments, we compare GM_AOS with  the  BB method and 
the SBB4 method.  GM_AOS    successfully solves 79 problems,  while the BB method and SBB4 
method successfully   solve 73 problems.  As shown in Fig. 1,   GM_AOS  is superior to the SBB4 
method and the BB  method relative to the number of iterations.  We see from Fig.2 that   GM_AOS 
requires much less function  evaluations than the SBB4 method and  the BB method. Fig. 3 shows that    

 
Figure 5. Performance profile based on tolN  

GM_AOS  requires less gradient evaluations than the  
BB method and the SBB4 method. In Fig. 4, we observe  that    GM_AOS is faster than the BB 

method and the SBB4 method. It indicates that GM_AOS outperforms  the SBB4 method and the BB 
method. 

In the second group of the numerical experiments, we compare GM_AOS with CGOPT and 
CG_DESCENT (5.3).  GM_AOS successfully solves 79 problems,  while  CGOPT  and 
CG_DESCENT (5.3) successfully solve   79 and 74 problems, respectively. As shown in Fig. 5,  
GM_AOS has  some advantage over  CG_DESCENT  (5.3) and CGOPT relative to the total number 

tolN  : 3tol fN N N= + g .   In  Fig. 6  we observe  that GM_AOS is slightly faster than CG_DESCENT 
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(5.3) and  CGOPT. It indicated  that     GM_AOS is competitive  to  CG_DESCENT (5.3) and CGOPT 
for the given test problem set. 

 
Figure 6. Performance profile based on cpuT  

5.Conclusion 
In this paper we construct some approximate models to generate approximately optimal stepsize and 
present   an efficient  gradient method for unconstrained optimization.  The numerical results indicate 
that GM_ AOS is not only superior to the  BB method and the SBB4 method but also is competitive to  
CGOPT and CG_DESCENT (5.3)    for the given test problems set.  We think that  gradient methods 
with approximately optimal stepsizes should be paid more attention, and the gradient methods with 
approximately optimal stepsizes are able tobecome a strong candidate for large scale unconstrained 
optimization. 
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