
Journal of Physics: Conference
Series

PAPER • OPEN ACCESS

Reasoning about Object-Z formal specification
with LTLC
To cite this article: Haijun Huang and Zhicheng Wen 2019 J. Phys.: Conf. Ser. 1176 022017

View the article online for updates and enhancements.

You may also like
Performance analysis of three-
dimensional-triple-level cell and two-
dimensional-multi-level cell NAND flash
hybrid solid-state drives
Yukiya Sakaki, Tomoaki Yamada, Chihiro
Matsui et al.

-

Compensation for large thorax excursions
in EIT imaging
B Schullcke, S Krueger-Ziolek, B Gong et
al.

-

Single-breath oxygen dilution for the
measurement of total lung capacity:
technical description and preliminary
results in healthy subjects
Giovanni Vinetti, Giovanni Ferrarini, Anna
Taboni et al.

-

This content was downloaded from IP address 3.145.93.136 on 09/05/2024 at 18:38

https://doi.org/10.1088/1742-6596/1176/2/022017
https://iopscience.iop.org/article/10.7567/JJAP.57.04FE03
https://iopscience.iop.org/article/10.7567/JJAP.57.04FE03
https://iopscience.iop.org/article/10.7567/JJAP.57.04FE03
https://iopscience.iop.org/article/10.7567/JJAP.57.04FE03
https://iopscience.iop.org/article/10.1088/0967-3334/37/9/1605
https://iopscience.iop.org/article/10.1088/0967-3334/37/9/1605
https://iopscience.iop.org/article/10.1088/1361-6579/ac0a9b
https://iopscience.iop.org/article/10.1088/1361-6579/ac0a9b
https://iopscience.iop.org/article/10.1088/1361-6579/ac0a9b
https://iopscience.iop.org/article/10.1088/1361-6579/ac0a9b
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjssdEk8uTjd9fAMFjOLW_qls129frJgMJfAoZrmymvHfx31wWzCG1OLFsvlOIxLZl02rgjVtCFDuFBHXPFtjGbNnrin8iTJAnxRXAF4znAdrYUyFqoWoqgzdGmvLXKLT93w5H9N-Zq-MxeY7KYs8M_qBUkmtPXYlPlYVRF6XCugtSQdjUxlLZz5ftnLzRsbWmJ8AlH2-zWRwGKK74GnZ4Ow0TLiMcflvqhBrBl3NNlHgtkfX8slt6vMQ1d9k14Kaxy3MSinvmd5XUlgvWZlA7jvNO3kMqjdU4bOR29BL7LWRyn6BMAdn5sb-970KUWGobup44gaGXP_AgJgHafhkqNE1VPaa-w&sig=Cg0ArKJSzOkUc-qLON42&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

SCSET 2018

IOP Conf. Series: Journal of Physics: Conf. Series 1176 (2019) 022017

IOP Publishing

doi:10.1088/1742-6596/1176/2/022017

1

Reasoning about Object-Z formal specification with LTLC

Haijun Huang1 and Zhicheng Wen1,*
1Jiangxi University of Engineering, Xinyu, Jiangxi Province, 338000, China

*Corresponding author e-mail: zcwen@mail.shu.edu.cn

Abstract: It presents a method that linear temporal logic with clock (LTLC) is added to
formal specification language Object-Z. LTLC Extending Object-Z is a modular formal
specification language, which is the smallest extension for Object-Z. The complex
real-time software formal specification can be described and verified easily by the
extended Object-Z. Finally, an example is given to show that the formal specification
of Object-Z can be reasoned and the correctness of the method is verified.

1. Introduction
Object-oriented formal specification is very suitable described by Object-Z[1]. Through the application
of object-oriented technology[2-4], it can describe complex data and algorithms. There is only the
abstract concept of termination and no concept of duration associated with operations. Therefore, a
real-time reaction system is very difficult to be described by Object-Z. In order to describe the
real-time specifications[5] about continuous time relationships or properties, this paper introduces a
method that Object-Z is extended with Linear Temporal Logic with Clock(LTLC). The extended
Object-Z using LTLC is the smallest extension of Object-Z syntax and semantics. For object-oriented
real-time system modeling, it can provide an elegant symbol. In addition, the verification becomes
convenient. Finally, this article uses an example to indicate that it can infer the Object-Z formal
specification to verify that formal specification developed is correct.

2. Adding LTLC to Object-Z

2.1 Syntax for extended Object-Z
The syntax for extending Object-Z, we will use LTLC to introduce in this section. In general, symbolic
logic formulas in the standard Object-Z are used to describe the invariants of classes and the predicates
of operations. You can use LTLC formula to describe the invariants of the class and an operation
predicates in the extended Object-Z.

2.1.1 Structure for Object-Z class. An optional operation MAIN is introduced in the extended Object-Z
class. There are several nondeterministic operations[6,7] in this class structure. In Figure 1, the structure
is shown where the clock variable tnow can be used to initialize the class system. In an operation, it is
only available for the other clock variables defined in a corresponding operation (explained in the next
section).

SCSET 2018

IOP Conf. Series: Journal of Physics: Conf. Series 1176 (2019) 022017

IOP Publishing

doi:10.1088/1742-6596/1176/2/022017

2

Classname
↑(Visib list)
Inherit class
Type def
Const def
State schem
Initial schem
OP schem
[MAIN=(OP1 []OP2[]…[]OPn) ; MAIN]

Fig 1 The extended Object-Z class

2.1.2 Structure for Object-Z operation. The operation predicate part of an extended Object-Z mode
consists of some optional parts[8]. The operation mode structure is shown in Figure 2.

OPschema
Var def

Jump transform
Delay transform
Non-transform
Time constraint

Fig 2 Extend Object-Z operation

Definition: The two corresponding clock variables are tv and t’v for any variable v.

2.2 Example
For example, there are three alternate signals of road traffic lights, red, yellow and green. Four
indicator lights (green, yellow, red) and four states (green, green, yellow, red, yellow) are a simple
example for the intersection indicator system. First, the green light lasts 60 seconds (green state).
There is a central (green, yellow) transition state after the green light is switched to the red light. This
will last 3 seconds. Then, red light for 50 seconds is held (red state). After that, the red light will
switch to green light, but also shifted to the middle (red, yellow) which lasts for 4 seconds. These four
signal states may change in sequence.

If the state variable is p in the state schema, it can be seen the state conversion defined, and it is
clear that the corresponding clock variable is tp and t'p. This state variable p is a delay amount, and
therefore corresponds to a delay conversion. It is shown for extended Object-Z style operation light
switch in Fig. 3.

 Lightswitch
Δ(p)
tp, t’p: Time
tp=0∧

 ([](p=1∧tp≤60)∧(p’=2∧tp>60∧t’p=0)
∨[](p=2∧tp≤3)∧(p’=3∧tp>3∧t’p=0)
∨[](p=3∧tp≤50)∧(p’=4∧tp>50∧t’p=0)
∨[](p=4∧tp≤4)∧(p’=1∧tp>4∧t’p=0))

 Fig 3 Operation lightswitch

It indicates for a predicate part that the clock variable tp starts first and it may convert from
current state to the next state which will continue for a while. The integers 1, 2, 3 and 4 simply present
the corresponding four states. For example, the notation of [](p=2×tp≤3)∧(p'=3×tp>3×t'p=0) means
that the current state 2will last for 3 seconds, but the clock variable is reset last (t'p = 0).

SCSET 2018

IOP Conf. Series: Journal of Physics: Conf. Series 1176 (2019) 022017

IOP Publishing

doi:10.1088/1742-6596/1176/2/022017

3

3. A case study
To better illustrate the use of extended Object-Z to describe formal specifications, here is an example.
The extension Object-Z specification is considered as follows: describing a formal system that
includes two classes of console and buttons.

The feature of a button object can be described by the class button (shown in Fig. 4). The button
contains the state variable recording whether the button is in the "0" or "1" position. First, the button
object is in state 0. You just want to think the specific time mt1 you can switch between cities of
buttons. As a result, the state of "0 / 1" is changed. This operation is designated by a toggle operation.
Therefore, button on is a toggle delay variable corresponding to two delay transformations.

The corresponding clock variable: t and t' are defined. The first line of the button class
specification indicates that the interface between the button class and the environment object is limited
to the execution and manipulation toggle of the initialization schema. Since toggle operations include
only delay variables, it does not lead to time-out and is not required to be combined with restoration.
The current time has two constraints every time ([](tnow> sometime, it must be time invariant) and the
delay time mt1 is smaller than the maximum delay class (updelay). The clock variable tnow is defined
from any class.

Button_class

↑ (Initialization, Toggle)
| mt1, sometimes, up_delay: Tim

on:{0,1}[optional]

[](tnow>sometimes)[optional]

Init
on=0

Toggle_op
Δ(on)
ton, t’on : Time

mt1<up_delay∧ton =0
([](on=0∧ton≤mt1)(on’=1∧ton>mt1∧t’on=0)
[](on=1∧ton≤mt1)∧(on’=0∧ton>mt1∧t’on=0))

| tnow: Real-time[real-time part]

Fig 4. Class Button

The Console class (Figure 5, Figure 6 and Figure 7) describes the function of the console object.
The console consists of two buttons, each called busy and lazy. The intention is that busy buttons are
toggled more frequently than delay buttons, but do not toggle more than the maximum number of
buttons for hardware tolerance prediction. The Console class object contains the constant max that
records the prediction error.

4. Reasoning formal specification
Formal verification includes model checking and theorem proving. In this section, we prove the
extended Object-Z by theorem proving. You can infer the characteristics and behavior of the
specification. The inference rules and methods of standard object Z reasoning are shown in [12]. The
properties of this class are expressed as A:: d∣Ψ├ Φ. When the statements d and predicate are given,
when the order of at least one predicate is true, the predicate is valid. That is to say, the predicate
attribute is true. Variables and constants only define the predicate "Φ". It is accessible within the class,
or is declared d.

SCSET 2018

IOP Conf. Series: Journal of Physics: Conf. Series 1176 (2019) 022017

IOP Publishing

doi:10.1088/1742-6596/1176/2/022017

4

Console
↑ (Init, ToggleOneButton, ShutDown)
| mt2, mt3, mt4,mt5: Time
| max: N
busyv, lazyv: Button
busy_c, lazy_c: N
[](busylazy)[](tnow>0)

Init
busy_c=0∧lazy_c=0
busyv.Init∧lazyv.Init[optional]

Operation: SelectAndIncrement0(as shown in Fig 6.)
Operation: ShutDown0(as shown in Fig7.)

SelectAndIncrement=
 SelectAndIncrement0⊿{t}Restore
ShutDown = ShutDown 0⊿{t}Restore
ToggleOneButton[]SelectAndIncrement b?.Toggle
MAIN=(ToggleOneButton[]ShutDown) ; MAIN

Fig 5. Class Console

SelectAndIncrement0

Δ(busy_c, lazy_c)
b?: Button
tb?, t’b? , tlazy_c, t’lazy_c, tbuzy_c, t’buzy_c :Time

busy_c<maxtb?=0tlazy_c=0tbuzy_c’=0
((b?=lazy∧lazy_c<busy_c) ∧b?=busy)
([](b?=busy∧lazy_c’=lazy_c+1∧tlazy_c>mt3

tb?>mt2∧t’lazy_ctr=0∧t’b? =0)
[](b?=busy∧busy_c’=busy_c+1
tbuzy_c>mt4∧tb?>mt2∧t’buzy_c=0∧t’b? =0))

Fig 6. Class SelectAndIncrement0

ShutDown0

Δ(busy_ctr)
tbusy_ctr, t’busy_ctr: Time
tbusy_ctr =0
[](busy_ctr=maxbusy_ctr’=busy_ctr+1
 tbusy_ctr>mt5t’busy_ctr=0)

Fig 7. Class Console

4.1 Reasoning the state variables
We may consider invariants, pre- and postconditions developed by Object-Z for LTLC. The symbol
invariants(x_var) in the state pattern represent invariants. In the state mode of class Class, variable X
represents the state variables. It has:

PreconditionOP = ∀x_var’:X; output_var:OUTPUT•
OP(x_var, x_var’,input_var, output_var) ∧Invariant(x_var’)∧Invariant(x_var)
PostconditionOP = Invariant(x_var’) ∧OP(x_var’, output_var)
The postcondition of the operation keeps the predicate expression, containing poststate or output

SCSET 2018

IOP Conf. Series: Journal of Physics: Conf. Series 1176 (2019) 022017

IOP Publishing

doi:10.1088/1742-6596/1176/2/022017

5

variables. Precondition and postcondition state variables can be expressed synchronously in
predicates.

Similarly, in real-time object-Z, efficient classes have invariants, and efficient operations have
their pre- and postconditions.

(1) Invariant rule:
InvariantClass(x_var,tnow)= Invariantilter(tnow,)∧InvariantClass(x_var)
For the Console operation, we have:
InvariantConsole(x_var, tnow)= (tnow>0)∧(busy∧lazy)
(2) Precondition rule: PreOP=PreOP(x_var, x_var’, Tvariable, Tvariable’)
(3) Postcondition rule: PostOP=Invariant∧PostOP(x_var, x_var’, Tvariable, Tvariable’)

Where, Tvariable represents the time variable; PreOP (x_var, x_var ', T., T.') represents the
preconditions, and can be calculated using this method. In normalization of object Z, InvarinatClass
(tnow), PostOP (x_var, x_var ', t, t') and InvarinatClass(x_var, t) have similar meanings.

4.2 Reasoning the properties
For the class Button of the example above, we have:

Button:: Toggle├
([](on’=1∧ton>mt1∧t’on=0)∧ (on=0∧ton≤mt1) ∨
[] (on’=0∧ton>mt1∧t’on=0)∧(on=1∧ton≤mt1))
∧ton =0∧mt1<updelay

 and
Button:: Toggle├

 [] (on’=1∧ton>mt1∧t’on=0)∧(on=0∧ton≤mt1) ∨
[] (on’=0∧ton>mt1∧t’on=0)∧(on=1∧ton≤mt1)

Then, we can use the theorem, it has:
Button:: Toggle├

 []((on’=1∧ton>mt1∧t’on=0)∧(on=0∧ton≤mt1) ∨
 (on’=0∧ton>mt1∧t’on=0)∧(on=1∧ton≤mt1))

and
Button:: Toggle├

 (on’=1∧ton>mt1∧t’on=0)∧(on=0∧ton≤mt1) ∨
 (on’=0∧ton>mt1∧t’on=0)∧(on=1∧ton≤mt1)

That is, in the Toggle operation, on=0∧ton≤mt1 remains until on’=1∧ton>mt1∧t’on=0 or on=1
∧ton≤mt1 remains until on’=0∧ton>mt1∧t’on=0. Symbol t’on=0 indicates a reset of clock variables. It
indicates that the switching state changes within 0/1 and the corresponding delay time is mt1, which is
consistent with the design requirements.

5. Conclusion
In this paper, we propose a method for extending LTLC to Object-Z. The extension with multithreaded
module style language LTLC is the minimum extension of Object-Z, and it is useful to describe and
verify formal specifications of complex system. Finally, use an example to instruct the Object-Z
format specification to make sure it is correct.

Acknowledgements
Haijun Huang(1980.11-), male, Han, Nanchang city, Jiangxi Province, master’s degree, associate
professor, majoring in: communication engineering and electronic science. Corresponding author:
Zhicheng Wen (1972.11-), male, Han, Dong’an county, Hunan province, Ph.D., professor, majoring in:
network security, trusted software.

References
[1] Smith G, The Object-Z Specification Language, Advances in Formal Methods, Kluwer Academic

Publishers, 2000.

SCSET 2018

IOP Conf. Series: Journal of Physics: Conf. Series 1176 (2019) 022017

IOP Publishing

doi:10.1088/1742-6596/1176/2/022017

6

[2] Smith G and Ian Hayes, An introduction to Real-Time Object-Z, Formal Aspects of Computing,
2002, 13:128-141

[3] Mahony, B.P. and Dong, J.S, Timed Communicating Object-Z, IEEE Transactions on Software
Engineering, 2000, 26(2): 150-177

[4] Brendan Mahony and Jin Song Dong, Deep Semantic Links of TCSP and Object-Z: TCOZ
Approach, Formal Aspects of Computing, BCS, 2002, 13:142-160

[5] P. BELLINI, R. MATTOLINI, and P. NESI, Temporal Logics for Real-Time System Specification,
ACM Computing Surveys, Vol. 32, No.1, March 2000

[6] Liu Ming-xing, Ma Wu-bin, et al. Modeling and verification of services oriented cyber physical
systems[J]. Journal of Computer Applications, 2014, 34(6): 1770-1773.

[7] Liu Yan, Zhang Xian, et al. Towards formal modeling and verification of pervasive computing
systems[J]. Transactions on Computational Collective Intelligence XVI, 2014, 8070: 62-91.

[8] MA Li, LI Wei-kang, LIANG Chen, LI Ai-ping. Formal Modeling and Verification of
Resource-oriented Internet of Things Systems[J]. Journal of Chinese Computer Systems, 2018,
39(1): 140-145.

