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Abstract. This paper presents a variational principle based on an extremum of entropy
production rate allowing the calculation of the full neoclassical equilibrium (particles, heat
and momentum) in tokamaks with an arbitrary helical perturbation.

1. Introduction
Determining the neoclassical equilibrium in tokamaks in presence of a helical perturbation is a
question of great interest. Indeed several processes break toroidal axisymmetry of a tokamak,
namely field ripple due to finite number of coils [1, 2, 3, 4, 5, 6, 7, 8], MHD instabilities, or
externally applied magnetic perturbations [9, 10, 11, 12]. One important point is the calculation
of toroidal and poloidal flows, since sheared flows back react on turbulence and MHD instabilities.
This question has been much debated in the 90’s [5, 8]).

A variational principle based on an extremum of entropy production rate is proposed here
to calculate the full neoclassical equilibrium (particles, heat and momentum). This method
has been applied with success to the case of ripple induced transport [13, 14]. It is extended
in the present work to an arbitrary helical perturbation. This approach provides an efficient
means to discriminate between various regimes, depending on collisionality and the amplitude
of the helical perturbation. It appears that fluxes and damping rates are usually not negligible.
Implications will be discussed, with applications to recent observations on Tore Supra [15].

The remainder of this paper is organized as follows. General properties of a variational
principle based on the entropy production rate are described in section 2. The section 3 is
dedicated to the application to neoclassical transport in a tokamak in presence of a helical
magnetic perturbation. A conclusion follows.

2. Entropy production rate in a tokamak with helical perturbation
2.1. Distribution function
A general expression of the entropy production rate for a non turbulent tokamak plasma in
presence of an helical perturbation can be found in ref.[14]. The analysis is restricted to the
case of a simple circular concentric equilibrium. The system of coordinates is labeled (r, θ, φ),
where r is the minor radius, θ the poloidal angle, and φ the toroidal angle. Moreover a single
ion species is considered. The equilibrium Hamiltonian is H = 1

2mv
2
∥ +µB+ eϕ, where m is the
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mass, v∥ the parallel velocity, µ the magnetic moment, B a reference magnetic field, and ϕ the
mean electric potential. The perturbed Hamiltonian reads

δH = −µBϵ cos θ + µBδ cos (Nφ+Mθ) (1)

where ϵ = r
R and δ(r) is the amplitude of the helical perturbation (it is assumed that it does

not depend on the poloidal angle). We call Mh = M +Nq the helical wave number. Particles
are trapped in the helical perturbation when the magnetic fields exhibit local extrema along the
field lines. If |Mh| >> 1, this occurs when Y = α |sin θ| < 1, where α = ϵ

|Mh|δ . This condition

defines for each minor radius r a domain in θ for which there exists locally trapped particles.
One can define an effective ripple amplitude, which is the depth of the magnetic well along the
field lines between successive minima and maxima [3], namely

2δeff =
Bmax
Bmin

− 1 = 2δ
(√

1− Y 2 − Y arccosY
)

(2)

If |Mh| << 1, two kinds of trapped particles exist: toroidally trapped, and helically trapped
particles. The distribution function is a function of motion invariants and is close to a local
Maxwellian, namely

FM =
N

(2πmT )3/2
exp

(
−H
T

)(
1 +

mWv∥
T

)
(3)

The function N is defined as N = n exp (eϕ/T ). The density n, potential ϕ and temperature
T are functions of the toroidal kinetic momentum eψ +mRv∥ (ψ is the poloidal magnetic flux
normalised to 2π), while W is a function of the total energy H that ensures finite mean parallel
velocity and parallel thermal flux. Once the condition RT

e ∂ψΞ +W = VT is fulfilled, where

∂ψΞ = ∂ψ lnn+
e

T
∂ψϕ+

(
E

T
− 3

2

)
∂ψ lnT (4)

and VT is the toroidal velocity (strictly speaking the parallel velocity), the distribution function
Eq.(3) is an exact solution of the Fokker-Planck equation for the unperturbed problem.
Multiplying Eq.(3) by v2∥/v

2
T , where vT =

√
T/m is the thermal velocity, and integrating over

the velocity space yields the conventional force balance equation in the large aspect ratio limit
[13]

−∂rϕ+ VpB − VTBp =
∂rp

ne
(5)

where Vp =
∫
d3vFM

v2∥
v2T
W is the poloidal velocity, and p the pressure. The entropy production

rate can be constructed with the help of the equations derived in [13, 14]. Fluxes and
thermodynamical forces can be properly defined from the resonant production rate using the
following expression

Ṡres = −1

2

∫
dV n

(
Γ

n

∂rn

n
+

M
nmvT

VT
vT

+
Q

nT

∂rT

T

)
(6)

where Γ and Q are the particle and heat fluxes, and M is the rate of dissipated momentum
due to toroidal collisional damping. Fluxes are therefore functional derivatives of the resonant
entropy production rate.
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3. Neoclassical transport tokamaks with an helical perturbation
3.1. Total entropy production rate
In this section, we restrict the analysis to a single ion species. Also the analysis is restricted
to the case where transit frequencies associated to E ×B and curvature drifts are smaller than
collisional frequencies. Hence this analysis holds for small values of the radial electric field.
The collisionality is measured with the conventional parameter for neoclassical theory ν∗ =
νqR
vT ϵ3/2

≪ 1, where ν is the collision frequency of the considered species. The collision frequency

is defined here as ν = 4
√
π

3
e4

(4πϵ0)
2

n
m2

i v
3
T
lnΛ. The normalized collision frequency is ν̄(v) =

3
4

√
2π(Φ(v) − G(v))/v3, where Φ(v) = 2√

π

∫ v
0 dx exp

(
−x2

)
and G(v) = (Φ(v) − vΦ′(v))/2v2.

All results are expressed as functions of ν∗, δ/ϵ, and wave numbers. With these conventions,

the collisionality parameter related to the helical perturbation reads ν∗hel =
ν∗

|Mh|
(
ϵ
δ

)3/2
. Also we

define an effective collisionality ν∗eff = max(1,M2
h)ν

∗. The total resonant entropy production
reads

Ṡres = Ṡhel + Ṡ′
tor + Ṡtor + Ṡ′

hel (7)

where

Ṡhel =
1

2

√
π

2

∫
dV n

M2

|Mh|

(
δ

ϵ

)2 qRv2D
vT

∫ +∞

0
due−uu2(

G′
0(α) +G0(α)min

(
1,

4

π
Iν∗hel

ν̄

u1/2

))
(
∂r lnN +

(
u− 3

2

)
∂r lnT +

eBp
T

Mh

M
VT

)2

(8)

Ṡtor =
1

2

√
π

2

∫
dV n

qRv2D
vT

∫ +∞

0
due−uu3/2ν̄(u) (9)

min

(
1,

4

π
Iν∗ ν̄

u1/2

)(
∂r lnN +

(
u− 3

2

)
∂r lnT +

eBp
T
VT

)2

(10)

where I = 1.38. The entropy production rate Ṡ′
tor associated to the effect of vertical drift on

helically trapped particles reads when ν∗hel ≪ 1

Ṡ′
tor = Khel

∫
dV G1(α)n

(
Nq

Mh

)2 (δ
ϵ

)3/2 1

ν∗
qRv2D
vT∫ +∞

0
due−uu5/2

1

ν̄(u)

(
∂r lnN +

(
u− 3

2

)
∂r lnT

)2

(11)

The rate Ṡ′
tor can be neglected for larger collisionality ν∗hel ≫ 1. Similarly the production rate

Ṡ′
hel due to effect of the helical perturbation on toroidally trapped particles is small when ν∗ ≫ 1.

If ν∗ ≪ 1, the expression of Ṡ′
hel depends on the effective collision frequency. In the low effective

collisionality regime ν∗eff ≪ 1

Ṡ′
hel = K ′

hel

∫
dV n(Nq)2

(
δ

ϵ

)2 1

ν∗
qRv2D
vT∫ +∞

0
due−uu5/2

1

ν̄(u)

(
∂r lnN +

(
u− 3

2

)
∂r lnT

)2

(12)

while for larger collisionality ν∗eff ≫ 1 one has

Ṡ′
hel =

1

2

√
π

2

∫
dV n

N2q2

|Mh|

(
δ

ϵ

)2 qRv2D
vT
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∫ +∞

0
due−uu2

(
∂r lnN +

(
u− 3

2

)
∂r lnT

)2

(13)

where dV = 4π2Rrdr, vD = T
eBR is the thermal curvature drift velocity, Khel =(

2
π

)3/2
min

(
8
9 , |Mh|

)
, and K ′

hel =
(
2
π

)3/2
min

(
8
9 ,

1
|Mh|3

)
. When α ≫ 1, the form factors G0,

G′
0, G1 are given by the relations G0(α) = 1

2π

∫
Y <1 dθ, G

′
0(α) = 1

2π

∫
Y >1 dθ, and G1(α) =

1
π

∫
Y <1 dθ sin

2 θ. In the opposite limit one gets G0 = G1 = 1 and G′
0 = 0. The integration

domains that correspond to the form factors G0, G
′
0, G1 do not span the whole phase space.

The reason is that each contribution to the entropy production rate is associated to a resonant
surface in the phase space where the entropy production rate is maximum. Indeed the production
rates come from collisional boundary layers near transitions from trapped to passing particles.

The strategy to determine the neoclassical equilibrium is rather straightforward. First
the extremum of the entropy production rate with respect to density variations yields the
particle flux. It appears readily that the electron flux is smaller than the ion flux by a factor√
me/mi ≪ 1. Thus the ambipolarity constraint reduces to a condition of vanishing ion flux,

Γ = 0. This constraint gives a relation between the radial electric field, toroidal velocity and
gradients of density and temperature (the poloidal velocity can be eliminated using the force
balance equation). Second the extremum with respect to toroidal velocity provides the damping
rate in the toroidal direction and therefore another constraint. Finally, the extremum with
respect to the temperature gradient yields the thermal diffusivity. Several situations may occur,
depending on whether local trapping occurs or not, and also depending on collisionality. We will
call ”weak perturbation regime” the situation where local trapping does not occur, and ”strong
perturbation regime” the case with local trapping. These two limits are detailed in the following
sections.

3.2. Weak perturbation
For small amplitudes of the helical perturbation Y > 1, no local trapping occurs, so that only
banana particles matter. We restrict the analysis here to the banana regime ν∗ ≪ 1. In that
case two regimes are possible: banana-drift and ripple-plateau (by analogy with the particular
case of ripple M = 0). These names follow the terminology proposed by Yushmanov [3], and
corresponds respectively to the ”1/ν” regime and superbanana-plateau regime of Shaing [12].
The transition regime, called ”

√
ν regime”, is not addressed here.

3.2.1. Banana-drift regime Two contributions remain in the entropy production rate: the
collisional friction of banana particles on passing particles Eq.(10), and a second related to the
effect of ripple on banana particles Eq.(12). The ambipolarity condition reads

(1 + k1)∂r lnN + (3.37− 0.17k1)∂r lnT + k1
eBpVT
T

= 0 (14)

The collisionality parameter k1 is similar to the one defined in [8]

k1 =
cν
cbd

1

min
(
8
9 ,

1
|Mh|3

)
N2q2

(
ϵ

δ
ν∗
)2

(15)

where cν = I
√

2
π

∫+∞
0 due−uu3/2ν̄(u) ≈ 1.1 and cbd =

(
2
π

)3/2 ∫+∞
0 due−uu5/2 1

ν̄(u) ≈ 7.4.

Hence the high collisionality regime is defined by the condition ν∗ ≫ Nq
[
min

(
8
9 ,

1
|Mh|3

)]1/2
δ
ϵ .

Note that this condition is consistent with the banana-drift condition ν∗eff ≪ 1 if δ
ϵ ≪
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1
Nq min

(
1, 1

|Mh|1/2

)
. The extremalisation with respect to the toroidal velocity yields the

following evolution equation

∂tVT = −cν
1

1 + k1

√
ϵν

(
VT − 3.54

∂rT

eBp

)
(16)

When the toroidal velocity has relaxed, i.e. VT = 3.54∂rTeBp
, the poloidal velocity is found by

combining this expression Eq.(14) with the force balance equation. It turns out that, whatever
the collisionality, it is equal to the conventional neoclassical poloidal velocity

Vp = 1.17
∂rT

eB
(17)

The force balance equation (or equivalently Eq.(14)) yields the radial electric field

eEr
T

= ∂r lnn+ 3.37∂r lnT (18)

Finally the extremalisation with respect to ∂r lnT yields the heat flux Q = −χin∂rT where

χi = 36.94min

(
8

9
,

1

|Mh|3

)
N2q2

δ2

ϵ1/2
v2D
ν

(1 + 0.246k1) (19)

These results are consistent with the values given by Kovrizhnykh [8].

3.2.2. Ripple-plateau regime Again two contributions remain in the entropy production rate:
banana Eq.(10), and ripple-plateau Eq.(13). The ambipolarity condition reads

(1 + k2)∂r lnN + (1.5− 0.17k2)∂r lnT + k2
eBpVT
T

= 0 (20)

where the collisionality parameter k2 is defined as

k2 =

√
2

π
cν

|Mh|
N2q2

(
ϵ

δ

)2

ν∗ (21)

Note that the parameter k2 corresponds to k−1
2 in [8]. The weak collisional regime is defined

as ν∗ ≪ N2q2

|Mh|

(
δ
ϵ

)2
, which is consistent with the ripple-plateau condition ν∗eff > 1 if δ

ϵ ≫
1
Nq min

(
|Mh|1/2 , 1

|Mh|1/2

)
. The extremalisation with respect to the toroidal velocity yields the

following evolution equation

∂tVT = −cν
1

1 + k2

√
ϵν

(
VT − 1.67

∂rT

eBp

)
(22)

The poloidal velocity is found by combining the relaxed toroidal velocity VT = 1.67∂rTeBp
with the

force balance equation and the ambipolarity condition Eq.(20). Again it is found to be equal to
the conventional neoclassical poloidal velocity Vp = 1.17∂rTeB for any collisionality parameter k2.
The force balance equation yields the radial electric field

eEr
T

= ∂r lnn+ 1.5∂r lnT (23)

Finally the extremalisation with respect to ∂r lnT yields the heat flux Q = −χin∂rT where

χi = 3

√
π

2

N2q2

|Mh|

(
δ

ϵ

)2 qRv2D
vT

(1 + 0.41k2) (24)
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3.3. Strong perturbation
In that regime, all 4 contributions must be kept in the entropy production rate. It is assumed
that ν∗ ≪ 1. Several situations must be considered. Let us assume first that helically trapped

particles are in the plateau regime ν∗hel =
ν∗

|Mh|
(
ϵ
δ

)3/2 ≫ 1. In that case, Ṡ′
tor is negligible.

Depending whether |Mh| is of order one, or larger than one, the parameter ν∗eff = max(1,M2
h)ν

∗

can be smaller or larger than one. If ν∗eff ≫ 1, toroidally trapped particles (bananas) are in

the ripple plateau regime. In this particular case, Ṡhel and Ṡ′
hel are of the same amplitude, if

M ∼ Nq. In that case, the radial electric field satisfies the relation

∂r lnN +
3

2
∂r lnT +

MMh

M2 +N2q2
eBpVT
T

= 0 (25)

and the toroidal friction rate reads

∂tVT = −
√
π

2
|Mh|

N2q2

M2 +N2q2
vT
qR

δ2VT (26)

If ν∗eff ≪ 1, toroidally trapped particles are in the banana-drift regime so that Ṡ′
hel ≫ Ṡhel.

The radial electric field is given by Eq.(18). The toroidal friction rate reads

∂tVT = −
√
π

2
|Mh|

vT
qR

δ2
(
VT − 1.87

M

Mh

∂rT

eBp

)
(27)

We now investigate the other extreme case where all particles are in the helically trapped regime,
i.e. ν∗hel ≪ 1, G′

0 = 0, and G0 = G1 = 1. The entropy production rate is then dominated by the

two contributions proportional to the inverse of the collision frequency, namely Ṡ′
tor and Ṡ′

hel.
Moreover Ṡ′

tor is larger than Ṡ′
hel provided that δ < ϵ/M4

h if toroidally trapped particles are

in the banana-drift regime ν∗eff ≪ 1, and provided that ν∗ ≪ (ϵ/δ)1/2 / |Mh| if they are in the
ripple-plateau regime ν∗eff ≫ 1. These conditions are usually met. The extremum of Eq.(11)
with respect to ∂r lnN and ∂r lnT then the particle and heat fluxes(

Γ
Q

)
= −nDlt

(
∂r lnN + 3.37∂r lnT

5∂rT

)
(28)

where Dlt = 6.58min
(
1, 98 |Mh|

)
N2q2

M2
h
δ3/2

v2D
ν . This expression is a generalization of the

expression given by Connor et al. [2] for ripple induced fluxes in tokamaks. Since electron
ripple losses are small, the ambipolarity constraint Γ = 0 imposes the value of the radial electric
field, which is the Connor value Eq.(18). At this point, one has still to find the ordering between

Ṡhel and Ṡtor. One finds easily that Ṡhel/Ṡtor is of the order of
(
M
Mh

)2 (
δ
ϵ

)1/2
. If M

Mh
≪
(
ϵ
δ

)1/4
,

the banana term Ṡtor is dominant. The extremum with respect to the toroidal velocity yields the
value VT = 3.54∂rTeBp

and a damping rate νφ = cν
√
ϵν. The toroidal velocity can be combined with

the radial electric field in the force balance equation to find the poloidal velocity Vp = 1.17∂rTeB .

If M
Mh

≫
(
ϵ
δ

)1/4
, the term Ṡhel is dominant. One finds VT = 3.54 M

Mh

∂rT
eBp

with the damping rate

νφ = cν
√
δν. The toroidal velocity can be combined with the radial electric field in the force

balance equation to find the poloidal velocity Vp ≈
(
3.54 M

Mh
− 2.54

)
∂rT
eB .

4. Discussion and conclusion
In conclusion, a variational principle based on a principle of extremum of entropy production
rate has been developed. This method allows the calculation of the neoclassical equilibrium in
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tokamaks with arbitrary helical perturbation. In tokamaks, helical perturbations usually come
from MHD perturbations or external coils (RMPs). Since the amplitude is small, the relevant
regime is banana-drift in the nearly collisionless regime [9, 10, 11, 12]. The regime that is usually
retained corresponds to k1 ≫ 1 (so-called ”1/ν” regime). Nevertheless, it turns out that the
weakly collisional regime k1 ≪ 1 is not that difficult to reach. In that case the toroidal friction
rate is of the order of ν

√
ϵ. More interestingly, the diffusion coefficient is not that small in

this regime, and exceeds the banana diffusion coefficient. However it remains smaller than a
turbulent diffusion coefficient. In ohmic plasmas in the Tore Supra tokamak, the level of density
fluctuations, and therefore turbulent transport, has been found to be very small (∼ 10−3) inside
the q = 1 surface. It appears that the measured diffusion coefficient of electrons is larger than
the neoclassical banana value. However the impurity flux does agree with the neoclassical value
when assuming axisymmetric geometry [15]. This paradox can be resolved if one accounts for
the presence of a (1, 1) internal kink mode with a reasonable amplitude. Electron collisional
diffusion increases due to the helical perturbation, while the impurity flux is barely affected.
Hence ripple induced transport matters for toroidal momentum transport, but also in some
cases for particle transport.
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