The following article is Open access

Chaos and the quantum: how nonlinear effects can explain certain quantum paradoxes

Published under licence by IOP Publishing Ltd
, , Citation Wm C McHarris 2011 J. Phys.: Conf. Ser. 306 012050 DOI 10.1088/1742-6596/306/1/012050

1742-6596/306/1/012050

Abstract

In recent years we have suggested that many of the so-called paradoxes resulting from the Copenhagen interpretation of quantum mechanics could well have more logical parallels based in nonlinear dynamics and chaos theory. Perhaps quantum mechanics might not be strictly linear as has been commonly postulated, and indeed, during the past year experimentalists have discovered signatures of chaos in a definitely quantum system. As an illustration of what can go wrong when quantum effects are forced into a linear interpretation, I examine Bell-type inequalities. In conventional derivations of such inequalities, classical systems are found to impose upper limits on the statistical correlations between, say, the properties of a pair of separated but entangled particles, whereas quantum systems allow greater correlations. Numerous experiments have upheld the quantum predictions (greater statistical correlations than allowed classically), which has led to inferences such as the instantaneous transmission of information between effectively infinitely separated particles — Einstein's "spooky action-at-a-distance," incompatible with relativity. I argue that there is nothing wrong with the quantum mechanical side of such derivations (the usual point of attack by those attempting to debunk Bell-type arguments), but implicit in the derivations on the classical side is the assumption of independent, uncorrelated particles. As a result, one is comparing uncorrelated probabilities versus conditional probabilities rather than comparing classical versus quantum mechanics, making moot the experimental inferences. Further, nonlinear classical systems are known to exhibit correlations that can easily be as great as and overlap with quantum correlations — so-called nonextensive thermodynamics with its nonadditive entropy has verified this with numerous examples. Perhaps quantum mechanics does contain fundamental nonlinear elements. Nonlinear dynamics and chaos theory could well provide a bridge between the determinism so dear to Einstein and the statisical interpretation of the Copenhagen school. Einstein and Bohr both could have been right in their debates.

Export citation and abstract BibTeX RIS

Please wait… references are loading.
10.1088/1742-6596/306/1/012050