
Journal of Physics: Conference
Series

     

OPEN ACCESS

Superfluid to normal phase transition in strongly
correlated bosons in two dimensions
To cite this article: J Carrasquilla and M Rigol 2013 J. Phys.: Conf. Ser. 414 012028

 

View the article online for updates and enhancements.

You may also like
Quantum Monte Carlo study of hard-core
bosons in Creutz ladder with zero flux
Yang Lin,  , Weichang Hao et al.

-

Generalized Gibbs ensemble in integrable
lattice models
Lev Vidmar and Marcos Rigol

-

Phase fluctuations in conventional
superconductors
Pratap Raychaudhuri and Surajit Dutta

-

This content was downloaded from IP address 18.222.120.133 on 09/05/2024 at 12:39

https://doi.org/10.1088/1742-6596/414/1/012028
https://iopscience.iop.org/article/10.1088/1674-1056/27/1/010204
https://iopscience.iop.org/article/10.1088/1674-1056/27/1/010204
https://iopscience.iop.org/article/10.1088/1742-5468/2016/06/064007
https://iopscience.iop.org/article/10.1088/1742-5468/2016/06/064007
https://iopscience.iop.org/article/10.1088/1361-648X/ac360b
https://iopscience.iop.org/article/10.1088/1361-648X/ac360b
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjssWrb0Yx20lComhSb0EfdoHDEmBositK25zZK-LxNsTO7Dr3jU4JGxBS8umQ7yPr_xwDPFi3h0FGKCfSdvrsX1oNU2Lu5jBcuUQxwNZJFisxMjXBkjnj_aagPVtyrkSQ0tLkN21lcYrYd6X64zY13y5dD8Ip6Ix4h2IX0iRaas_2_kDRPThWyzR4XsIa3hS70_SpCeFvwcB6KDqEo-RhZzF2tzoOR--c3wIEkMOXZWsS_3_FhBuxzI4hq8ndn-5BOg-ssq-FXiCsvCxYhhWZQn2379Wtk9TNkCQYdNtWs3ieSjSP28wXPQyecvxHcuTe-2mVolSNOQbB2L5zuK2Ua9ap5y-ww&sig=Cg0ArKJSzK1yQfu-gQs2&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Superfluid to normal phase transition in strongly

correlated bosons in two dimensions

J Carrasquilla and M Rigol

Department of Physics, Georgetown University, Washington, DC 20057, USA, and
Physics Department, The Pennsylvania State University, 104 Davey Laboratory, University
Park, Pennsylvania 16802, USA

E-mail: carrasqu@physics.georgetown.edu

Abstract. Using quantum Monte Carlo simulations, we investigate the finite-temperature
phase diagram of hard-core bosons (XY model) in two-dimensional lattices. To determine
the phase boundaries, we perform a finite-size-scaling analysis of the superfluid stiffness in
two different ways and find that both approaches provide results of comparable accuracy.
Furthermore, we discuss how such a phase diagram can be determined by measuring the
occupancy of the zero momentum mode in homogeneous and trapped systems. The latter
approach can be used in current experiments with ultracold gases.

1. Introduction

Systems of interacting bosons are of interest in a vast range of physical contexts such as in
experiments with superfluid helium [1], Josephson-junction arrays [2], elementary excitations in
magnetic insulators that can be understood as bosonic quasiparticles [3], and more recently in
experiments with ultracold gases loaded in optical lattices [4, 5]. Specifically, the latter ones offer
a unique opportunity to study models that are widely considered in statistical and condensed
matter physics with unprecedented experimental control over the parameters which, in turn,
determine the Hamiltonian describing such systems. The Bose-Hubbard model [6, 7] is perhaps
the most successful example of such systems where the match between experiment and theory has
been corroborated in widely diverse situations. More concretely, the Mott-insulator transition
has been experimentally observed in such a model and in various effective dimensionalities
[8, 9, 10, 11]. Despite the fact that it has received considerably less attention, the superfluid to
normal transition in the Bose-Hubbard model has been realized in a two-dimensional lattice of
Josephson-coupled Bose-Einstein condensates [12, 13], and in experiments with ultracold atoms
in two- and three-dimensional optical lattices [14, 15].

One important aspect that determines the nature of the physical phases and their associated
order parameters is the dimensionality d. Mermin, Wagner, and Hohenberg rigorously proved
that at any nonzero temperature, continuous symmetries cannot be spontaneously broken
in systems with sufficiently short-range interactions in dimensions d ≤ 2 [16, 17]. This
implies that, at finite temperature, Bose-Einstein condensation (BEC) cannot occur in one
and two dimensions. Two-dimensional Bose systems, however, are marginal in the sense that
fluctuations are strong enough to destroy the fully ordered state but are not so strong as to
suppress superfluidity. Thus critical behavior develops in the Berezinskii-Kosterlitz-Thouless
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(BKT) transition [18, 19], where a superfluid phase with quasi-long-range order competes
with thermal fluctuations and induces a continuous phase transition to the normal fluid as
the temperature is increased. It was found that the mechanism for the transition in two
dimensions is markedly different from the usual finite-temperature phase transitions because
it does not involve any spontaneous symmetry breaking. Kosterlitz and Thouless predicted
that superfluid transition occurs through the formation of vortex-antivortex pairs in the quasi-
long-range ordered superfluid phase that are instead free in the normal phase. Because of the
absence of a local order parameter in the low-temperature phase and because of the essential
singularity in the divergence of the correlation length, the numerical detection of the superfluid
transition in two dimensions is very subtle. However, it was also predicted that in such a
transition, the superfluid stiffness jumps from zero to a finite value at the critical temperature.
Taking advantage of that observation, several approaches that measure the superfluid stiffness
have been introduced. Since most numerical work is based on simulations of finite-sized clusters,
several schemes, mainly based on the renormalization group theory of such transition, have been
introduced in the literature in order to perform size-scaling analysis of the superfluid stiffness
[20, 21, 22].

Our goal here is to focus on the superfluid to normal transition in a system of strongly
interacting bosons in two-dimensional lattices. Specifically, we consider the Bose-Hubbard
model in the limit of infinite on-site repulsion, i.e., the hard-core boson limit. By the use
of exact quantum Monte Carlo simulations, we compute the finite-temperature phase diagram
as a function of chemical potential. Accurate results are obtained through finite-size scaling
of the the superfluid stiffness. To perform the finite-size scaling, we used two different but
related schemes and we show that the results of both methods are consistent. Furthermore, we
introduce and test a method to detect such transition that is based on the measurement of the
zero-momentum occupation, which can be applied to both homogeneous and inhomogeneous
systems. This method can be used in experiments with ultracold atoms even in the presence
of unavoidable confining potentials that, in such setups, are needed in order to contain the gas.
We note that, in the presence of a confining potential, domains of different phases can coexist
in the trap both at zero [23, 24, 25] and finite [26, 27, 28, 29] temperature. A related and more
extensive discussion on work discussed here, including an analysis of the three-dimensional case,
can be found in Ref. [30].

The paper is organized as follows. In Sec. 2, we introduce the model and its phase diagram
in two dimensions. Section 3 is devoted to the discussion of the techniques to obtain the phase
boundaries. Finally, in Sec. 4, we draw our conclusions.

2. Model and phase diagram

We consider a system of hard-core bosons on a two-dimensional lattice with L2 sites. The
Hamiltonian can be written as

Ĥ = −t
∑

〈i,j〉

(

â†i âj +H.c.
)

− µ
∑

i

n̂i , (1)

where â†i (âi) is the boson creation (annihilation) operator at a given site i, and n̂i = â†i âi is
the particle number operator at site i. The hard-core boson creation and annihilation operators

satisfy the constraint â†2i = â2i = 0, which prohibit multiple occupancy of lattice sites. The first
term in equation (1) is the kinetic energy, where t is the hopping amplitude between neighboring
sites i and j (〈i, j〉). The second term contains the chemical potential µ that controls the total
number of particles in the system. In what follows, positions will be given in units of the lattice
spacing a and the energy will be given in units of the hopping amplitude t.
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Figure 1. (Color online) Finite
temperature phase diagram in two
dimensions as obtained by two
different size scaling procedures.

We recall that the Hamiltonian in equation (1) can be exactly mapped to the broadly studied
quantum XY model [31]

Ĥ = −2t
∑

〈i,j〉

(

Sx
i S

x
j + Sy

i S
y
j

)

− µ
∑

i

Sz
i , (2)

where Sα
i is the αth component of the spin-1/2 spin operator at site i. In the spin language, the

term proportional to t describes a ferromagnetic exchange interaction, while the one proportional
to µ describes a magnetic field in the z-direction.

We study the Hamiltonian in equation (1), at finite temperature T , by means of the stochastic
series expansion (SSE) quantum Monte Carlo (QMC) method with operator-loop updates
[32, 33, 34]. The determination of the phase diagrams is carried out through a finite size
scaling of the superfluid stiffness ρs using periodic boundary conditions. The numerically exact
(QMC) phase diagram in two dimensions (2D) is presented in figure 1. The finite-temperature
phase diagram comprises a low-temperature quasi-ordered superfluid lobe surrounded by a high-
temperature normal phase with exponentially decaying correlation functions. Specifics on the
procedure to obtain the phase boundaries are discussed in the following section.

3. Superfluid to normal phase transition in two dimensions

3.1. Superfluid stiffness and the Kosterlitz-Thouless transition

Our results for the two-dimensional phase diagram in figure 1 are based on the fact that the
model in equation (1) undergoes a BKT transition as a function of the temperature. This
phase transition has been studied in great detail the context of the two-dimensional quantum
XY model in equation (2) in the absence of a magnetic field [35, 36, 37, 21]. Kosterlitz and
Thouless predicted that the superfluid stiffness ρs jumps from zero to the value (2/π)Tc at the
critical temperature. Thus, we consider measurements of the superfluid stiffness ρs for different
system sizes L as a function of temperature. Within the SSE method, the superfluid stiffness
is computed by measuring the fluctuations of the winding number W [38]; they are connected
through the relation ρs = 〈W 2〉/2β, where β = 1/T is the inverse temperature.

Figure 2(a) shows results for the superfluid stiffness of 2D hard-core bosons at µ = 0 [or
equivalently the spin stiffness of the 2D XY model in equation (2)] as a function of T for several
system sizes. The observed slow approach of the superfluid stiffness to the characteristic jump
expected for the infinite system is due to strong finite-size effects at the BKT transition. Finite-
size scaling relations for the superfluid stiffness can be derived by integrating the Kosterlitz
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renormalization-group equations [see, for instance, Refs. [21, 39, 20]. This procedure yields

ρs (T, L)π

2T
− 1 = c coth 2c (lnL+ l0), T < Tc

ρs (Tc, L)π

2T
− 1 =

1

2 (lnL+ l0)
, T = Tc

ρs (T, L)π

2T
− 1 = c cot 2c (lnL+ l0), T > Tc (3)

where cmeasures the distance from the critical point and l0 depends only weakly on temperature.
Close to the critical point c ∼

√

|T − Tc|. In the limit 2c (lnL+ l0) ≪ 1, a scaling form for the
superfluid stiffness based on equation (3) can be written as

ρs (T, L)π

T
− 2 =

1

lnL+ l0
F
[

(lnL+ l0)
2 (T − Tc)

]

. (4)

From equation (3) in the limit 2c (lnL+ l0) ≪ 1, F (x) = 1 − (4/3)x. One can find the
scaling function F and critical temperature Tc by computing xL = (lnL+ l0)

2 (T − Tc) /t and
yL = ρs (T, L)π/T − 2 based on our Monte Carlo simulations for different L and T . The
adjustment of the constant l0 and critical temperature Tc, such that the data produce the
best possible collapse, yields a numerical estimate of the scaling function F and the critical
temperature itself. The result of the determination of the scaling function F is reported in
figure 2(b), where a plot of yL as a function of xL is presented. Notice that, as expected, the
value of F is very close to one for xL = 0 and that the function is, to a very good approximation,
a straight line with negative slope similar to 4/3. Our result Tc/t = 0.685± 0.001 is consistent
with the best value reported in Ref. [21], for which Tc/t = 0.6846 ± 0.0006. An analogous
procedure to the one just described is carried out for different values of the chemical potential
to complete the two-dimensional phase diagram in figure 1 (drawn with green empty circles).

Based on the relations in equation (3) at the critical temperature, one can also use the
following scaling Ansatz for the superfluid stiffness as a function of system size and temperature
[22]

ρs (T, L) =

(

1 +
1

2 [lnL+ l0]

)

F ′ (ξ/L) , (5)

which is expected to be a good approximation in the vicinity of the critical temperature T → T+
c .

When dealing with equation (5), we assume the essential singularity of the correlation length

ξ ∼ eb/(T−Tc)
1/2

, where b is a chemical-potential dependent scaling factor. [Note that equation (5)
is, strictly speaking, inconsistent with renormalization-group arguments, which lead to equation
(4).] F ′ is a scaling function that, after taking the logarithm of the argument, can be replaced
by another function f . Hence, equation (5) can be written as

ρs (T, L)
∗ = f

(

x′L
)

, (6)

where x′L = lnL − b/ (T − Tc)
1/2 and ρs (T, L)

∗ = ρs (T, L)
(

1 + 1
2[lnL+l0]

)−1
. The scaling

hypothesis in equation (6) is consistent with the fact that the rescaled superfluid stiffness
ρs (T, L)

∗ becomes system-size independent at the critical temperature where the correlation
length diverges. The scaling function f can be obtained numerically by finding the constants b
and c, as well as the critical temperature Tc, that produce the best possible collapse of the data
in the normal phase where the correlation length is finite. The result of the estimation of the
scaling function f is portrayed in figure 2(c), where a plot of the rescaled superfluid stiffness
as a function of x′L is presented. As expected, the data is seen to coalesce to a unique curve
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Figure 2. (Color online) (a) Superfluid stiffness for µ = 0 and several values of L. The error
bars (not shown) are smaller than the point size used in the plot. (b) Data collapse according
to the relation in equation (4). (c) Numerical determination of the scaling function f based on
equation (6). The inset in (c) shows the rescaled superfluid stiffness vs T .

representing f(x′L), which makes apparent the relevance of the scaling relation in equation (6) to
the region close to the critical point. As argued before, one expects from equations (3) and (5)
that a plot of the rescaled superfluid stiffness ρs (T, L)

∗ as a function of the temperature T should
become system-size independent at the critical temperature Tc. This observation is confirmed
in the inset of figure 2(c). Remarkably, those curves intersect with the line (2/π)T right at the
critical temperature, in agreement with the BKT scenario. Our result Tc/t = 0.687 ± 0.002
is again consistent with the values reported in Ref. [21] and with the value obtained through
equation (4). This procedure is carried out for different values of the chemical potential to
complete the two-dimensional phase diagram in figure 1 (green empty dots). Note that, in
figure 1, the two scaling procedures lead to almost identical phase diagrams.

Finally, we should mention that equation (3) predicts the value of the superfluid stiffness in an
infinite system at the critical temperature to be ρs (Tc) /Tc = 2/π. However, in Ref. [40], it was
shown that the superfluid stiffness at the transition temperature is ρs (Tc) /Tc ≃ 0.63650, which
is very close (and indistinguishable within the present study) to the result based on equation
(3) [2/π ≃ 0.63662].

3.2. Zero-momentum occupation and trapped systems

We now turn our attention to the behavior of the occupation of the zero momentum state
[nk=0 ≡ n0] in the critical region, and address the determination of the transition temperature
from it. As mentioned in the introduction, thermal fluctuations in two dimensions prevent the
emergence of a Bose-Einstein condensate, which means that and the zero-momentum occupation
is not macroscopic. Nevertheless, as the critical temperature is approached from the normal
phase, n0 diverges [see figure 3(a)]. From the Fourier transform of the one-body density matrix

in the long-distance limit 〈â†i âi+r〉 ∝ r−1/4 exp (−r/ξ), one can precisely understand the way n0

diverges as Tc is approached,
n0 ∼ ξ7/4. (7)

From equation (7), it follows that not only does n0 diverge at Tc, but also its derivative with
respect to T does,

dn0

dT
∼ −

ξ7/4 ln3 ξ

b2
(8)

In finite clusters, however, when T is close to Tc, the role of the correlation length is taken over
by L when ξ & L. This occurs at a temperature T ∗ (L) determined by the critical temperature
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Figure 3. (Color online) (a) Zero-momentum occupation n0 vs T . (b) Derivative of the zero-
momentum occupation n0 with respect to the temperature for different values of L. (c) Finite-
size scaling of the height of the negative peak in dn0/dT . The continuous line is a fit to the
function g(L) = a0 + a1L

7/4 ln3(a2L). The inset shows the finite-size scaling of T ∗ (L).

and the size of the system under consideration, it is given by

T ∗ (L) = Tc + b′/ ln2 L, (9)

where b′ is a related to b. At that temperature, the derivative in equation (8) scales with the
system size as

dn0

dT

∣

∣

∣

∣

T ∗(L)

∼ −
L7/4 ln3 L

b2
. (10)

Below T ∗(L), n0 cannot vary as fast as right above T ∗(L) because the exponential increase
of the correlation length is truncated by L. Below T ∗(L), the variation of n0 comes mainly from
the temperature dependence of the anomalous exponent, which is not as strong as the variation
due to the exponential behavior of the correlation length. Accordingly, dn0/dT should exhibit
a sharp minimum at the size-dependent temperature T ∗ (L). Additionally, in a finite system,
n0 cannot grow indefinitely as the temperature is reduced. In the limit T → 0, n0 must come
closer to its (finite) T = 0 value, which implies that the derivative with respect to temperature
should eventually vanish for any given finite cluster.

Figure 3(b) shows the derivative of the n0 for different system sizes as a function of T . The
divergence of dn0/dT is clearly observed. A sharp minimum develops and its location T ∗ (L)
approaches Tc as the system size increases. This is expected from the finite-size relation in
equation (9). The scaling of the height of this minimum is studied in figure 3(c), where we
plot the absolute value of dn0/dT |T ∗(L) vs L. The data follows the scaling relation in equation

(10), as made evident by a fit to the function g(L) = a0 + a1L
7/4 ln3(a2L). In the inset in

figure 3(c), we show the finite-size scaling of T ∗ (L). We observe that T ∗ (L) is consistent
with the scaling relation in equation (9), which we use to obtain the critical temperature in
the thermodynamic limit. We find Tc/t = 0.701 ± 0.007. This value is compatible with the
one found by performing the finite-size scaling of the superfluid stiffness. While this approach
is obviously less accurate than the one discussed before for ρs, among other things because a
numerical derivative is involved, the fact that it works very well is important for current trapped
ultracold gases experiments where n0 can be measured while the superfluid density cannot.

If an additional confining potential is added to the system, the reasoning we have just
presented remains valid. The effect of the confining potential can be taken into account
by replacing the second term in equation (1) with a spatially varying chemical potential as
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Figure 4. (Color online) (a) n0 as a function of T and β in a trapped 2D system with
V0/t = 0.00125, µ = 0 in the center of the trap, and L = 128. (b) Derivatives of n0 with
respect to β and with respect to T . (c) Estimate of the critical points based on the derivative
of the zero-momentum occupation with respect to β (red diamonds based on a system with
L = 128). The phase diagram of the homogeneous system is also shown for comparison.

µ
∑

i n̂i →
∑

i µin̂i. Here, µi = µ − V0r
2
i , where V0 quantifies the strength of the harmonic

potential and µ plays the role of the overall chemical potential. At fixed chemical potential
(µ ≤ 0), when lowering T , the normal-to-superfluid crossover in the trapped system proceeds
through the appearance and enlargement of a superfluid region in the center of the trap. Hence,
the zero-momentum state becomes increasingly populated. Exactly as it was argued for finite
homogeneous systems, it is expected that as T → T+

c for the normal-to-superfluid transition
in the center of the system, the rate of growth of n0 will increase. Below Tc, on the other
hand, dn0/dT will eventually decrease because of the finite extend of the system imposed by the
confining potential. If T is lowered well below Tc, almost the entire system will become superfluid
and the observables will saturate their (finite) zero-temperature values. This means that the
derivative dn0/dT is expected to exhibit a minimum very close to the critical temperature.

Therefore, a similar approach to detect criticality can be utilized in confined systems.
Provided that the trapping potential is weak enough, the accuracy of the estimations based
on trapped systems should be comparable with the accuracy obtained in the homogeneous case.
Figure 4(a) depicts the evolution of n0 vs T , as well as vs the inverse temperature β, for a
harmonically confined 2D system with V0/t = 0.0015 (L = 128) and µ = 0 in the center of
the trap. In figure 4(b), we show dn0/dT which, as expected, exhibits a minimum located at
T/t = 0.66 ± 0.02. This temperature is compatible with the value of Tc/t obtained for the
homogeneous case where, after a finite-size scaling, we obtained Tc/t = 0.685 ± 0.001. Our
estimate derived from the study of a single trapped system is about 4% off the value of the
homogeneous system.

The same analysis based on measurements of n0, but now as a function of the inverse
temperature β, can be carried out; in that case, one expects a maximum in the derivative
dn0/dβ instead of a minimum. Generally, for finite and not very large systems, the position
of such maximum βc will not coincide with 1/Tc obtained from the minimum of dn0/dT [30].
Overall, we find that, for the system sizes available to our QMC simulations, the analysis based
on dn0/dβ provides more accurate estimates of the critical temperature than the one based on
dn0/dT . This follows from the fact that, the maximum found in dn0/dβ is consistently sharper
and better defined when compared to the minimum found for dn0/dT , which instead is shallower
and broader, thus leading to results with lower accuracy. Based on measurements of dn0/dβ
presented in figure 4(b) on the same system with V0/t = 0.0015 (L = 128), µ = 0, we find
Tc/t = 0.72± 0.02. This value is also very close to the critical temperature of the homogeneous
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system. When the maximum is sharply defined, in the limit of very shallow traps with large
numbers of bosons, the two approaches should coincide (i.e., their difference is due to finite size
effects) [30]. Therefore, for the determination of the phase diagram based on measurements in
harmonically confined systems, we consider only measurements based on dn0/dβ.

In figure 4(c), we summarize our results for the determination of the critical parameters with
the derivative of the zero-momentum occupation with respect to β, and contrast them with the
phase diagram of the homogeneous system. In spite of the small differences and the fact that
the peaks in dn0/dβ are shallower than those of the homogeneous system, the agreement in the
calculations of the phase diagram based on both the homogeneous and the trapped systems is
remarkably good. We mention that at the tip of the superfluid lobe, where the size effects are
expected to be the strongest, we observed that as the size of the system is increased (or the
strength of the trap is decreased), keeping constant the chemical potential in the center of the
trap, the estimate of the critical temperature decreases approaching the result in homogeneous
systems.

4. Conclusions

We have presented a detailed study of the finite temperature phase diagram of strongly correlated
bosons in the hard-core limit (or the XY model) in two dimensions. The critical parameters
were determined through a finite-size scaling analysis of the superfluid stiffness. Two methods
to determine the critical temperature have been used. The first method follows directly from
the integration of the Kosterlitz-Thouless renormalization group equations while the second one
is based on an Ansatz that is justified only in the vicinity of the critical temperature. The
validity of the second method has been, nevertheless, empirically confirmed by the quality of
the collapse obtained in our analysis. Both methods provided results with comparable accuracy
and the phase diagrams obtained are consistent with each other.

We introduced an approach to estimate the critical temperature from measurements of n0

in finite systems. It makes use of the behavior of the derivative dn0/dT and we derived finite-
size scaling relations that can be used to extrapolate the results to the thermodynamic limit.
This approach can be applied to systems that exhibit a diverging zero-momentum occupation
in any dimension, irrespective of the universality class to which the transition belongs to.
When an additional confining potential is introduced, we considered measurements of the
critical temperature based on measurements of the zero-momentum occupation, out of which
we obtained a phase diagram that is in good agreement with the homogeneous counterpart.
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