The following article is Open access

STEM strain analysis at sub-nanometre scale using millisecond frames from a direct electron read-out CCD camera

, , , , , , , , , and

Published under licence by IOP Publishing Ltd
, , Citation K Müller et al 2013 J. Phys.: Conf. Ser. 471 012024 DOI 10.1088/1742-6596/471/1/012024

1742-6596/471/1/012024

Abstract

We report on strain analysis by nano-beam electron diffraction with a spatial resolution of 0.5nm and a strain precision in the 4–7·10−4 range. Series of up to 160000 CBED patterns have been acquired in STEM mode with a semi-convergence angle of the incident probe of 2.6mrad, which enhances the spatial resolution by a factor of 5 compared to nearly parallel illumination. Firstly, we summarise 3 different algorithms to detect CBED disc positions accurately: selective edge detection and circle fitting, radial gradient maximisation and cross-correlation with masks. They yield equivalent strain profiles in growth direction for a stack of 5 InxGa1−xNyAs1−y/GaAs layers with tensile and compressive strain. Secondly, we use a direct electron read-out pnCCD detector with ultrafast readout hardware and a quantum efficiency close to 1 both to show that the same strain profiles are obtained at 200 times higher readout rates of 1kHz and to enhance strain precision to 3.5·10−4 by recording the weak 008 disc.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/471/1/012024