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Abstract. We demonstrate the reconstruction of f(R) modified gravity theory with late-time
accelerated cosmic expansion. A second-order differential equation for Lagrangian density is
obtained from the field equation, and is solved as a function of the cosmic scale factor in two
cases. First we begin with the case of a wCDM cosmological model, in which a dark-energy
equation-of-state parameter w is constant, for simplicity. Next we extend the method to a case
in which the parameter w is epoch-dependent and is expressed as the Chevallier-Polarski-Linder
parametrization. Thus we can represent Lagrangian density of f(R) modified gravity theory in
terms of dark energy parameters.

1. Introduction
The discovery of accelerated expansion in the late-time universe by observations of distant type
Ia supernovae [1, 2, 3] is manifestly one of the most remarkable advances in modern cosmology.
Combining it with observational data of other astrophysical objects such as the cosmic microwave
background, the universe acceleration is being established, but the theoretical solution to the
cause of the acceleration is yet to be seen although theoretical possibilities have been explored
with a large number of dark energy models [4, 5]. A ‘f(R) modified gravity’ dark energy model,
in which some function of the scalar curvature R is added to the Einstein-Hilbert action as a
correction, is one of such theoretically possible models [6]. It is of great interest for theorists to
study this model because it is, in a sense, most straightforward extension of Einstein’s general
relativity, and also will provide a clarification of the link between the universe acceleration
and gravitational theories. (We should bear in mind the role of Starobinsky’s R2-model in
inflationary cosmology [7].) There is, however, no guiding principle for determining the form of
f(R); only severe constraints have been obtained from local-scale experiments (e.g. solar system
tests) [8] and cosmological observations [9, 10, 11]. Therefore, we can only design the form of
f(R) so that it satisfies those observational constraints.

In this article, we demonstrate the reconstruction of f(R) modified gravity theory for a given
accelerated cosmic expansion as an illustration of designing f(R). As models of the cosmic
expansion, we employ a wCDM cosmological model, in which a dark-energy equation-of-state
parameter w is constant, and the Chevallier-Polarski-Linder (CPL) parametrization [12, 13],
which has been frequently used in dark energy phenomenology. This work extends the previous
works that treat the reconstruction of f(R) gravity with mainly a ΛCDM model [14, 15, 16].
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2. Basic equations in f(R) modified gravity
We consider f(R) modified gravity theory with the action

S =
1

16πG

∫
f(R)

√
−g d4x + Sm , (1)

where G is Newton’s gravitational constant, R is the four-dimensional scalar curvature, g is the
determinant of the space-time metric gµν , and Sm denotes the action of matter field described
as a pressureless fluid. The action principle yields the field equations

F (R)Rµν −
1

2
f(R)gµν −∇µ∇νF (R) + gµν2F (R) = 8πGT (m)

µν , (2)

where F (R) := ∂Rf(R), ∇ represents the four-dimensional covariant derivative, 2 := gµν∇µ∇ν ,

and T
(m)
µν is the energy-momentum tensor of pressureless matter. Hereafter we write the function

f(R) as R − ξ(R), where ξ(R) plays the role of an effective dark energy component, and then
F (R) = 1− ∂Rξ(R).

In a homogeneous and isotropic universe model with the scale factor a(t), a spatial constant
curvature K, and the energy density ρM(t) of pressureless matter, the (0, 0)-component of the
field equations (2) reads

H2 +
K

a2
=

8πG

3
ρM +

1

6
ξ(R) +H∂t (∂Rξ(R))− ∂Rξ(R)

(
∂tH +H2

)
, (3)

where H := ∂ta/a is the Hubble parameter, and R = 6∂tH + 12H2 + 6K/a2. Note that this
equation is reduced to the Friedmann equation in the standard FLRW universe model if we set
ξ(R) = 2Λ with a positive cosmological constant Λ. Replacing the time variable t with a, and
the variable R with a, and rearranging Eq. (3), we obtain

∂2aξ −
(

1

a
+
∂aH

H
+
∂2aR

∂aR

)
∂aξ +

∂aR

6aH2
ξ =

∂aR

aH2

(
H2 +

K

a2
− 8πG

3
ρM

)
. (4)

3. Reconstruction of f(R) gravity with dark energy parametrization
We assume that the cosmic expansion is that of the universe with a spatial constant curvature
k, matter density ρm(t), and dark energy density ρd(t), obeying Einstein’s general relativity.
Then the Friedmann equation is written as

H2 +
k

a2
=

8πG

3
(ρm + ρd) . (5)

Introducing the dark-energy equation-of-state parameter w := Pd/ρd with the dark energy
pressure Pd, the integration of the continuity equation gives the dark energy density as

ρd(a) = ρd(a0) E(a) ; E(a) := exp

[
−3

∫ a

a0

1 + w(ã)

ã
dã

]
, (6)

where the subscript ‘0’ denotes the present value. Then the Friedmann equation (5) is
rewritten as H2 = H2

0

(
Ωm0 a

−3 + Ωd0E + Ωk0 a
−2), where Ωm0 := 8πGρm(a0)/(3H

2
0 ), Ωd0 :=

8πGρd(a0)/(3H
2
0 ), Ωk0 := −k/H2

0 and a0 := 1, and the scalar curvature as

R = 3H2
0

[
Ωm0 a

−3 + (1− 3w)Ωd0E + 2 (Ωk0 − ΩK0) a
−2
]
, (7)
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where ΩK0 := −K/H2
0 . Rewriting the right-hand side of Eq. (4), we arrive at the following key

equation for the reconstruction:

∂2aξ −
(

1

a
+
∂aH

H
+
∂2aR

∂aR

)
∂aξ +

∂aR

6aH2
ξ =

∂aR

aH2
H2

0

[
(Ωk0 − ΩK0) a

−2

+ (Ωm0 − ΩM0) a
−3 + Ωd0E

]
, (8)

where ΩM0 := 8πGρM(a0)/(3H
2
0 ). Hereafter, we assume that Ωm0 = ΩM0 and Ωk0 = ΩK0 = 0

for simplicity.

3.1. Case of the wCDM model
First we demonstrate the reconstruction in a wCDM model, in which the parameter w is
constant, and then E(a) = a−3(1+w). The key equation (8) is reduced to

∂2aξ −
1

a
C1(a)∂aξ −

3

2a2
C2(a)ξ = − 9

a2
C2(a)H2

0Ωd0 a
−3(1+w) , (9)

where

C1(a) := −9

2
− 3w

2

Ωd0

Ωm0
a−3w

[(
1 +

Ωd0

Ωm0
a−3w

)−1
+ 2(1− 3w)(1 + w)

×
(

1 + (1− 3w)(1 + w)
Ωd0

Ωm0
a−3w

)−1]
, (10)

C2(a) := 1− (2w + 3w2)
Ωd0

Ωm0
a−3w

(
1 +

Ωd0

Ωm0
a−3w

)−1
. (11)

To find homogeneous solutions of Eq. (9) in an approximate form, we make an ansatz

ξ(a) ∝ an, and then find that n =

(
1 + C1 ±

√
(1 + C1)

2 + 6C2

)
/2 =: n±, which

asymptotically becomes n± ≈
(
−7±

√
73
)
/4 in matter-dominated era (a−3w � 1), and

n± ≈
(
−7− 9w ±

√
73 + 78w + 9w2

)
/4 in dark-energy-dominated era (a−3w � 1). Since

R ≈ 3H2
0Ωm0 a

−3 and R ≈ 3(1− 3w)H2
0Ωd0 a

−3(1+w) in these respective eras, the homogeneous

solutions lead to ξ(R) ∝ R(7+
√
73)/12 ≈ R1.3 in matter-dominated era, and ξ(R) ∝

R(7+9w−
√
73+78w+9w2)/(12+12w) ≈ R−3.6 (for w ≈ −0.9) in dark-energy-dominated era. These

have been found to be observationally inconsistent [9, 10], and thus we take only the particular
solution of Eq. (9) into account, omitting the homogeneous solutions. Using the method of a
Green function, we obtain

ξ ≈ 6H2
0Ωd0 a

−3(1+w)

2− 5w − 6w2
≈ 6H2

0Ωd0

2− 5w − 6w2

(
R

3H2
0Ωm0

)1+w

in matter-dominated era, (12)

ξ ≈ 3(1− 3w)H2
0Ωd0 a

−3(1+w) ≈ R in dark-energy-dominated era. (13)

3.2. Case of the CPL parametrization
Next we proceed to a more general case, in which the parameter w is expressed as w =
w0 + w1(1 − a) with constants w0 and w1, and then E(a) = a−3(1+w0+w1) exp[−3w1(1 − a)].
This phenomenological model is known as the Chevallier-Polarski-Linder (CPL) parametrization.
Here we focus on finding the form of ξ(R) only in matter-dominated era because the universe
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is considered to have been matter dominant during most of the epoch after photon decoupling,
except for the most recent epoch. Then the key equation (8) becomes

∂2aξ +
9

2a
∂aξ −

3

2a2
ξ = −9H2

0Ωd0

a2
a−3(1+w0+w1) exp[−3w1(1− a)] , (14)

whose particular solution is

ξ =
−18H2

0Ωd0 e−3w1

√
73

[
an+

∫ a

ã−(n++4+3w0+3w1)e3w1ã dã− an−

∫ a

ã−(n−+4+3w0+3w1)e3w1ã dã

]
,

(15)
where n± = (−7±

√
73)/4. Utilizing the Taylor expansion for e3w1a, we obtain

ξ =
∑
`

−18H2
0Ωd0 e−3w1a−3(1+w0+w1)

2 [`− 3(1 + w0 + w1)]
2 + 7 [`− 3(1 + w0 + w1)]− 3

(3w1a)`

`!
(16)

≈
∑
`

−18H2
0Ωd0 e−3w1(3w1)

`

`!
{

2 [`− 3(1 + w0 + w1)]
2 + 7 [`− 3(1 + w0 + w1)]− 3

} ( R

3H2
0Ωm0

)1+w0+w1−`/3
. (17)

4. Summary and outlook
In this article, the reconstruction of Lagrangian density of f(R) gravity has been demonstrated
for a given cosmic expansion in the context of dark energy cosmology. We have adopted a
wCDM model, in which dark-energy equation-of-state parameter w is constant, and the CPL
parametrization, as phenomenological models of accelerated cosmic expansion. In these cases,
Lagrangian density of f(R) gravity has been expressed in terms of dark energy parameters. We
hope that the results obtained would be useful in clarifying the relation between dark energy
parameters and local gravity constraints, and also in evaluating the effect of gravity modification
on cosmological perturbations in the framework of f(R) gravity theory.
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