Paper The following article is Open access

Simulation of the hybrid Tunka Advanced International Gamma-ray and Cosmic ray Astrophysics (TAIGA)

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and

Published under licence by IOP Publishing Ltd
, , Citation M Kunnas et al 2015 J. Phys.: Conf. Ser. 632 012040 DOI 10.1088/1742-6596/632/1/012040

1742-6596/632/1/012040

Abstract

Up to several 10s of TeV, Imaging Air Cherenkov Telescopes (IACTs) have proven to be the instruments of choice for GeV/TeV gamma-ray astronomy due to their good reconstrucion quality and gamma-hadron separation power. However, sensitive observations at and above 100 TeV require very large effective areas (10 km2 and more), which is difficult and expensive to achieve.

The alternative to IACTs are shower front sampling arrays (non-imaging technique or timing-arrays) with a large area and a wide field of view. Such experiments provide good core position, energy and angular resolution, but only poor gamma-hadron separation. Combining both experimental approaches, using the strengths of both techniques, could optimize the sensitivity to the highest energies.

The TAIGA project plans to combine the non-imaging HiSCORE [8] array with small (∼10m2) imaging telescopes. This paper covers simulation results of this hybrid approach.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/632/1/012040