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Abstract. In this paper we propose acoustic power transfer as a method for the remote 

powering of pipeline sensor nodes. A theoretical framework of acoustic power propagation in 

the ceramic transducers and the metal structures is drawn, based on the Mason equivalent 

circuit. The effect of mounting on the electrical response of piezoelectric transducers is studied 

experimentally. Using two identical transducer structures, power transmission of 0.33 mW 

through a 1 m long, 118 mm diameter cast iron pipe, with 8 mm wall thickness is 

demonstrated, at 1 V received voltage amplitude. A near-linear relationship between input and 

output voltage is observed. These results show that it is possible to deliver significant power to 

sensor nodes through acoustic waves in solid structures. The proposed method may enable the 

implementation of acoustic - powered wireless sensor nodes for structural and operation 

monitoring of pipeline infrastructure. 

1. Introduction 

Monitoring the condition and operation of infrastructure in industrial plant, transportation and 

distribution networks are important application areas for emerging Internet of Things technologies. 

This application is important because it can reduce operation and maintenance costs, improve service 

availability and introduce reliable safety and security mechanisms. It can also enable new services, 

including centralized industrial control and intelligent control of resource networks. The 

implementation of such systems is increasingly becoming economically beneficial, for a variety of 

applications, in terms of utilization, reliability and insurance, but also in environmental and 

infrastructure security terms. 

 The development, installation and operation of continuous monitoring systems for infrastructure 

such as aircraft engines [1], urban trash collection [2], oil and gas pipelines [3] and intelligent 

transportation systems [4] has progressed rapidly in recent years largely due to the maturity of wireless 

communications. A challenge in the broad adoption of permanent monitoring installations is powering 

the sensor nodes involved, especially when deployed in large numbers and/or at inaccessible locations. 

For this purpose, considerable attention has been attracted to the development of low-power 

electronics and high-density batteries for wireless sensor nodes. Ultimately, a maintenance-free 

permanent monitoring system requires energy autonomous wireless nodes, which is achievable by 

harvesting energy from the local environment [5], using a radioactive power source [6], or wireless 

power delivery [7, 8]. For the latter, power can be delivered in various ways, the most commonly 

proposed in recent publications being via inductive coupling and via vibrational waves. Other possible 

means include electromagnetic radiation, light, heat and low-frequency motion and vibration. 

 Here, acoustic energy transmission through metal pipes is studied and assessed as a method for 

powering sensor nodes located on the outer pipe surface. This is relevant to monitoring applications 

involving pipeline structures, such as gas, oil, water, and sewage networks, and also industrial 

environments such as plant, production and mining sites. 
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2. System concept 

The objective of the proposed system is to remotely power wireless sensor nodes that are installed on 

the surface of a pipe, by transmitting a vibration wave along the pipe walls; shown in in Fig. 1. The 

system consists of a vibration exciter, which induces a transverse, longitudinal or shear vibration wave 

into the pipe structure. The vibration propagates down the pipe through the pipe walls, the contents 

and the surrounding material. Each wireless sensor node is equipped with a vibration harvester, which 

can be inertial or direct-force-based, depending on the installation requirements. The received energy 

is transduced into electrical form and, subsequently, it is either used directly or accumulated in 

intermediate storage. In this work the exciter and sensor/harvester are piezoelectric transducers. 
 

 
Figure 1: Left: Conceptual description of the proposed powering method. Right: Model of acoustic 

power transmission based on the Mason equivalent circuit. 
 

3. Theoretical background 

Acoustic properties of pipeline structures have been rigorously studied in developing methods for 

structural characterization, and especially for the non-invasive measurement of inner corrosion in 

metal pipes [9]. Driven by a large commercial market, this work has been extended to include 

simulation and analytical tools, providing a strong theoretical and experimental background [10, 11]. 

 In support of the discussion of the experimental results in this paper, an outline of a simple lumped-

element modelling method, based on the Mason model [12] for piezoelectric transducers and a T 

equivalent circuit for acoustic transmission lines is given below. It is noted that in this model, as a first 

approximation for vibration transmission at low frequencies, the pipe structure is treated as a bulk 

material. The corresponding lumped-element circuit is shown in Fig. 1 (right). 

 The case of using identical transducers for the transmitter and the receiver is analysed, as illustrated 

in the right-top of Fig. 1. Each transducer consists of a PZT crystal with area A, thickness τ, dielectric 

constant ε, bulk modulus K and density ρ. An adaptor layer is used between the crystal and the pipe, 

while a reflector layer is used on top, allowing for acoustic impedance matching. The pipe structure is 

treated as a bulk material, with non-dispersive wave propagation. This means that a constant PZT 

sound speed ���� = ��/	  can be assumed for all frequency values. The specific acoustic impedance 

quantity, denoted as Z in Fig. 2, is defined as the ratio of force over velocity, with unit N / (m/s). The 

Mason model specific impedances, for zero attenuation, are 
� = �
tan	(��/2), 
� = −�
csc	(��), 

 = 	 ∙ � ∙ � and � = �/����, where � is the wave angular velocity [12, 13]. The transformer factor 
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is � = � ∙  ∙ !, with unit A / (m/s), where � is the voltage constant of the piezoelectric material, with 

unit (V/m) / Pa, and   is the capacitance of the PZT device. The reflector and adaptor specific 

impedances are denoted as ZR and ZA respectively. The pipe can be modelled as a T network. A 

detailed analysis of modelling of PZT devices using the Mason and the KLM equivalent circuits can 

be found in [12, 13]. 
 

4. Experimental results 

To evaluate the feasibility of the proposed concept, an experimental system was constructed. A 

schematic of the setup is shown in Fig. 2 (left). Two identical transducers are used as the transmitter 

and the receiver, each consisting of an APC International Ltd PZT 850 disk with diameter 48 mm and 

thickness 7.9 mm, a 60 × 60 × 20 mm aluminium reflector on top and an aluminium adaptor of the 

same size with a concave side on the bottom. The density, dielectric and voltage constants of the PZT 

850 material are 7600 kg/m
3
, 1900 and 26.8 mV/m respectively [14]. The two transducers were 

mounted on a 1.8 m long, Ø 118 mm cast iron pipe, with 8 mm wall thickness, at various distances, 

using adjustable straps (red in Fig. 2, right). 

 The electrical impedance of the PZT disk was characterized by I-V measurements, using a 10 V 

amplitude signal in the range between 1 kHz and 1 MHz. The current was monitored through the 

voltage drop on a 50 Ω resistance connected in series with the transducer. The response of an un-

mounted PZT disk is presented in Fig. 3 (left). Characteristic resonance-anti-resonance peaks that 

correspond to vibration resonance, expressed by the tangential terms in the Mason model, are observed 

at various frequencies. In order to identify their origin, the calculated impedance of the PZT is also 

plotted for comparison, for axial and radial vibration. For this calculation, the model outlined in 

Section 3 was used, using the nominal values of the PZT devices, with a sound speed of 4600 m/s and 

a corresponding bulk modulus of 168 GPa. The un-mounted PZT device corresponds to zero forces at 

its surfaces, and hence short-circuited terminals in the Mason model. The comparison illustrates that 

the lower frequency resonances correspond to the radial vibration modes of the disk, with τ = 46 mm, 

corresponding to 196 kHz, while the larger frequency resonance, corresponds to the axial mode, with 

τ =7.9 mm, corresponding to 1.19 MHz. For reference, the case of a hardbound PZT, such that no 

lattice motion is possible at the edges is also plotted in Fig. 3 (left). This corresponds to open circuit 

conditions in the Mason model, giving an impedance of 1/ωC. 

 The effect of mounting on the electrical impedance of the PZT disk is studied in Fig. 3 (right), 

where the responses of an un-mounted disk, a disk attached to the reflector and adaptor parts, and a 

pipe-mounted disk (shown in Fig. 3, right) are compared. As expected, the additional impedance 

induced by the aluminium brackets reduces the intensity of the PZT disk resonance effects. This serves 

as an indication of power delivery to the pipe and can be used as a measure of mounting quality, or to 

identify a successful device mounting during the installation of transmitter and receiver devices. 
 

  
 

Figure 2: Schematic (left) and image (right) of the acoustic power transmission evaluation setup. 

transmitter 

receiver 

cast iron pipe 

PZT 
disk  

reflector  

adaptor 

PowerMEMS 2015 IOP Publishing
Journal of Physics: Conference Series 660 (2015) 012095 doi:10.1088/1742-6596/660/1/012095

3



 

 

 

 

 

 

 
 

Figure 3: Left: Calculated and measured electrical response of the PZT transducer without mounting. 

Right: Measured electrical response in different mounting states.  

 

 Power transfer experiments were carried out using a function generator in the 1 kHz – 100 kHz 

frequency range, with a Falco WMA-300 high voltage amplifier to drive the transmitter PZT disk, 

with voltage amplitude up to 150 V.  The distance between the transmitter and the detector was 1 m. 

A resistive load RL was connected directly to the receiver PZT output. The optimum RL value depends 

on the operation frequency. The level of received power is also frequency dependent. In the particular 

set up used, peak received power was observed at 48.5 kHz, with RL = 1.5 kΩ. This is demonstrated in 

the measured transmitted and received signals shown in Fig. 4 (left). The transmission signal is a 

150 V, 48.5 kHz sinusoidal signal, pulse-modulated at a frequency of 200 Hz and 25% duty cycle. The 

amplitude of the sinusoidal voltage amplitude measured on RL was 1 V, corresponding to a received 

RMS power of 0.33 mW for a continuous drive signal. 

 The received voltage was measured as a function of the applied voltage amplitude at the 

transmitter. The results are shown in Fig. 4, right, both for the open-circuit voltage, and the 1.5 kΩ 

load. A linear relationship between input and output is observed, at good approximation, with a 

gradient of 2.5 mV/V. The ratio of output voltage on RL to the open circuit voltage remains constant in 

the transmission voltage range between 50 V and 150 V, at around 55%. The corresponding power 

delivery range that is demonstrated in this experiment is between 20 µW and 100 µW. This is less than 

the 0.33 mW demonstrated in the experiment of Fig. 4, left, because during the voltage sweep, 

emphasis was given to consistency of mounting conditions rather than to achieving maximum power. 

In practice, the 0.33 mW output was demonstrated by pressing down the receiver to achieve better 

contact. In voltage sweep, this was avoided for consistency. This power delivery level is adequate for 

the requirements of low power sensor nodes and the corresponding voltage is sufficient to drive 

commercial power management systems designed for energy harvesting devices. 

 

6. Conclusion 

In this paper, a new method for remote powering of sensor nodes installed on structures such as metal 

pipes was proposed. A simple theoretical analysis framework was drawn and an experimental 

validation setup was designed and built. Acoustic delivery of 0.33 mW RMS power through a pipeline 

at a distance of 1 m was demonstrated. This power range may be adequate for various application 

scenarios, such as corrosion monitoring of pipeline networks, where the data acquisition scheduling 

permits duty cycled node operation. Optimization of the acoustic mode selection, transmitter and 

detector designs, and practical mounting, are expected to enable a practical solution to the challenge of 

powering sensor nodes that are permanently installed in remote locations.  
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Figure 4. Left: Transmitter and receiver voltage at 48.5 kHz, at a distance of 1 m, demonstrating a 

received power of 0.33 mW. The transmission is pulsed to show the acoustic delay between the 

signals. Right: Received vs transmitted voltage (top) and corresponding delivered power (bottom) 

at 48.5 kHz, at a distance of 1 m. 

 

References 

[1] N. Waters, "Engine Health Management," Ingenia, 2009. 

[2] Big Belly Solar 2014 http://www.cityofboston.gov/publicworks/cleanliness/litter.asp 

[3] F. Cegla and J. Allin, Oil and Gas Pipelines, ed: John Wiley & Sons, Inc., 2015, pp. 571-8. 

[4] Barrero F, Guevara J A, Vargas E, Toral S and Vargas M. 2014 Comp. Stan. Interf. 36 300-11 

[5] Briand et al 2015 Micro Energy Harvesting 12: John Wiley & Sons. 

[6] Olsen L C, Cabauy P and Elkind B J 2012 Physics Today, 65 35-8. 

[7] Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P Soljačić M 2007 Science, 317, 83-6 

[8] Denisov A and Yeatman E M, 2010 Int. Conf. on Body Sensor Networks (BSN) 84-9. 

[9] Silk M G and Bainton K F, 1979, Ultrasonics 17 11-9. 

[10] Cawley P, Cegla F and Stone M 2013 J. Nondestr. Eval. 32 156-63 

[11] Long R, Lowe M and Cawley P 2003 Ultrasonics 41 509-19 

[12] Sherrit S, Leary S P, Dolgin B P and Bar-Cohen Y 1999 Ultrasonics Symp. 2 921-6 

[13] O'Donnell et al 1981 Methods in Experimental Physics. 19, Academic Press 29-65 

[14] APC materials 2015 http://www.americanpiezo.com/apc-materials/piezoelectric-properties.html 

0

0.25

0.5

0.75

0 50 100 150

R
e
c
e
iv

e
r 

v
o
lt
a
g
e
 a

m
p
lit

u
d
e
 /
V

Transmitter voltage amplitude  / V

Open Circuit

1.5 kΩ Load

0

20

40

60

80

100

120

0 25 50 75 100 125 150

p
o
w

e
r 

d
e
liv

e
ry

  
/ 
µ

W

Transmitter voltage amplitude / V

-150

-100

-50

0

50

100

150

-10 -5 0 5 10

T
ra

n
s
m

it
te

r 
v
o
lt
a
g
e
 /
 V

Time / ms

-1

-0.5

0

0.5

1

-10 -5 0 5 10

R
e
c
e
iv

e
r 

v
o
lt
a
g
e
 o

n
 1

.5
 k

Ω
 /
 V

Time / ms

PowerMEMS 2015 IOP Publishing
Journal of Physics: Conference Series 660 (2015) 012095 doi:10.1088/1742-6596/660/1/012095

5



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 5.40 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     322
     Fixed
     Up
     5.4000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     5
     4
     5
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 7.20 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     322
     Fixed
     Down
     7.2000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     5
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move down by 4.25 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     322
     Fixed
     Down
     4.2520
     0.0000
            
                
         Both
         AllDoc
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     5
     4
     5
      

   1
  

 HistoryList_V1
 qi2base





