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Abstract. We propose a statistical modeling method of wind power output for very short-term prediction.
The modeling method with a nonlinear model has cascade structure composed of two parts. One is a linear
dynamic part that is driven by a Gaussian white noise and described by an autoregressive model. The other
is a nonlinear static part that is driven by the output of the linear part. This nonlinear part is designed for
output distribution matching: we shape the distribution of the model output to match with that of the wind
power output. The constructed model is utilized for one-step ahead prediction of the wind power output.
Furthermore, we study the relation between the prediction accuracy and the prediction horizon.

1. Introduction
Recently, renewable energies, such as solar power and wind power energies, are installed to the existing
power networks that is composed of the conventional generators, such as thermal and nuclear energies.
The aim of the installation is to reduce environment load and to prevent global warming. Such renewable
energies contribute to CO2 reduction and realize a safer power system. However, since their energy
outputs uncertainly fluctuate depending on a weather condition, direct installation of the renewable
energies inevitably causes demand supply imbalance in the entire power system.

An approach to this problem is equipping the renewable energies with battery storages to smooth the
output fluctuations. In some cases, battery storages can be substituted by solar-thermal energies that are
connected to renewable energies and compensate the energy outputs, e.g., [1]. The efficient smoothing
operation in such storage-equipped energy systems, mainly relies on accurate prediction of the renewable
energy outputs. In this paper, we develop a prediction method of renewable energy outputs, in particular,
model-based prediction of the wind power output. Many methods of predicting the wind power output
based on statistical models have been proposed [2][3]. For example, an autoregressive (AR) model and a
Just-In-Time (JIT) model are designed for performing short-term prediction of the wind power output, for
1–10 minutes-ahead prediction. In this paper, we design a statistical model for very-short term prediction
of the wind power output, for 1–10 seconds-ahead prediction. The predicted output can be utilized for
effective governor-free operation, which controls outputs of the conventional generators to maintain a
constant frequency.

To improve the prediction accuracy, it is necessary to precisely match the time series behavior of real
output with that of the model output. In addition, it is also important to match the distribution [4] of

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012176 doi:10.1088/1742-6596/744/1/012176

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



0 3600 7200 10800
0

200

400

600

800

1000

1200

Time[s]

W
in
d
ou

tp
u
t

 

 

Modeling data

Validation data

Fig. 1. Wind power output data y(k)

Fig. 2. Model structure

the model output with that of the real output. To this end, we consider a model structure that combines
an AR model with a nonlinear transformation for the output distribution matching. Then, we propose
the modeling method for this model. We utilize the Box-Cox transformation [5], which transforms the
time series with a non-Gaussian distribution into those with a Gaussian distribution. Finally, we apply
the proposed method to measurement data of wind power output. In the prediction result, we show the
effectiveness of the proposed distribution matching. Furthermore, we study the relation between the
prediction accuracy and the prediction horizon.

2. Proposed method
A typical time series data of the wind power output data is shown in Fig. 1. We design a dynamic model
that expresses the wind power output denoted by {y(k)}. The proposed model includes the nonlinear
transformation as illustrated in Fig. 2. In this figure, the model has cascade structure composed of two
parts: One is a linear dynamic part that is driven by a Gaussian white noise and described by an AR
model. The other is a nonlinear static part that is driven by the output of the linear part. This nonlinear
part is designed such that the distribution of its output matches with that of the wind power output. In
this section, we explain the proposed model in more detail. Then, we propose a design procedure of the
nonlinear function and the AR model from given wind power output data.

2.1. Model structure
In Fig. 2, the linear dynamic part G represents an AR model described by

G : z(k) =
1

1 + a1q−1 + · · ·+ anq−n
w(k), (1)

where z(k) and w(k) represent the output of G and a zero-mean Gaussian white noise, respectively. The
symbol n is the model order, ai, i ∈ {1, · · · , n} is the constant coefficient, and q is the shift operator.
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Fig. 3. Histogram of wind power data at three hours period where sampling time is one second

General time series data is conventionally often modeled by the AR model under the implicit
assumption that the data follows a Gaussian distribution [5]. However, as illustrated in Fig. 3, the
histogram of the wind power output does not follow any Gaussian distribution. This means that the
AR model cannot completely express the wind power output. In order to transform the given wind power
output data into time series data with the Gaussian distribution, the nonlinear static part fλ is connected
to the output of the AR model as illustrated in Fig. 2.

We define the inverse function of fλ and illustrate the role of fλ. We consider the following Box-
Cox transformation, which shapes the time series {y(k)} into the time series {z(k)} with the Gaussian
distribution. For any positive value y, the Box-Cox transformation is defined by

z := gλ(y) =

{
λ−1(yλ − 1), λ ̸= 0

log y, λ = 0
, (2)

where the constant λ is the design parameter. The inverse function of the Box-Cox transformation (2) is
also defined as

y = g−1
λ (z) =

{
(λz + 1)

1
λ , λ ̸= 0

ey, λ = 0

:= fλ(z),

and this inverse function represents the nonlinear static part fλ(z).

2.2. Modeling method
First, we find the optimal parameter λ⋆ which minimizes the gap in the distribution of the time series
data and the Gaussian distribution. Note that gλ in (2) depends on λ. For a fixed λ, we obtain the mean
µ̂λ and variance σ̂λ of the transformed data {z(k)} by applying the maximum likelihood estimation. The
optimal parameter λ⋆ is given by

λ⋆ = argmin
λ

N∑
i=1

Ji(λ), (3)

where

Ji(λ) =

{
Φ−1
SN

(
ℓ− 0.5

N

)
−
(
z(ℓ)− µ̂λ

σ̂λ

)}2

(4)
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Fig. 4. Histogram of the transformed wind power data at three hours period where sampling time is one
second

and Φ−1
SN (·) represents an inverse cumulative density function of the standard normal distribution. Note

that the transformed data z(ℓ) in (4) is sorted in ascending order that is z(1) ≤ z(2) ≤ · · · ≤ z(N). The
cost function (4) means the error between standardized time series data and a quantile corresponding to
the data.

Next, applying the Box-Cox transformation to the time series data {y(k)}, we obtain the transformed
data {z(k)}. Since the mean value of the transformed data {z(k)} does not become zero, it is further
transformed into time series data {z̃(k)} whose mean value is zero as

z̃(k) = z(k)− µ̂λ⋆ .

Finally, we construct the AR model (1) from the transformed data {z̃(k)}. In a similar way to the
conventional modeling methods [5], we find the model parameter ai by solving the Yule-Walker equation
that is determined by {z̃(k)}.

3. Prediction result of wind power output
In this section, we apply the proposed modeling method to wind power output data and show the
effectiveness of the method.

3.1. Modeling
We apply the proposed modeling method to wind power output data in Fig. 1. The data at Minami-Awaji
city, Japan, was measured for every 1 second interval. The time series data from 12:00 to 15:00 in
February 3rd, 2015, is plotted in Fig. 1. The first 75 percent of the data, denoted by {y1(k)}, was utilized
for modeling and the remaining data, denoted by {y2(k)}, was for a prediction experiment.

For the modeling data {y1(k)}, we solved the optimization problem, which was given in (3). We
performed the grid search to solve the problem under the additional constraint: λ > 0, and obtained
λ⋆ = 0.355. The histogram of {y1(k)} and that of the transformed data {z1(k)} achieved by the Box-
Cox transformation with λ⋆ are shown in Figs. 3, 4, respectively. We see that the distribution of {z1(k)}
in Fig. 4 is closer to a Gaussian distribution than that of {y1(k)} in Fig. 3.

After we transformed the original modeling data {y1(k)}, we modeled an AR model from the
transformed modeling data {z̃1(k)}. In the AR model, the model order was set to n = 4 on the
basis of Akaike’s information criterion [6]. Then, we designed the model parameter as [a1, a2, a3, a4] =
[−1.232,−0.0523, 0.1152, 0.1735].
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Fig. 5. One-step ahead prediction for 50 seconds period

Table 1. Prediction result in Fig. 5
AR ARI Proposed

RMSE [kW] 6.439 6.459 6.496
ℓ∞ [kW] 58.158 62.202 54.934

3.2. Result of one-step ahead prediction
We performed one-step ahead prediction of the wind power output using the constructed model. The
prediction ŷ2(k) was obtained by applying the inverse Box-Cox transformation to the prediction ẑ2(k)
that was obtained as the output of the AR model. Additionally, we utilized a saturation function to avoid
an unrealistic prediction value. Details of this method is summarized in the Appendix.A

Fig. 5 shows the result for one-step ahead prediction. We applied the constructed model to the
remaining data {y2(k)} and the prediction values were partially plotted in Fig. 5. In this figure, we
see that the prediction values approximately capture the measurement data.

To evaluate the prediction accuracy quantitatively, we define the root mean squares error

RMSE :=

(
N∑
k=1

(ỹ2(k)− ŷ2(k))
2

) 1
2

and the ℓ∞ norm of the prediction error

ℓ∞ := max
k

|ỹ2(k)− ŷ2(k)|.

The accuracy evaluation is summarized in Table 1. In this table, the prediction accuracy achieved by the
proposed method is compared with that by the conventional AR model and an autoregressive integrated
(ARI) model, which is an AR model designed by using difference data. The model order of the AR and
ARI models were 4 and 3, respectively. In Table 1, we see that the proposed modeling method achieves
the highest accuracy in the sense of ℓ∞ norm, while the ARI model achieves the highest accuracy in
RMSE.

3.3. Analysis of prediction result for prediction horizon
We analyze the dependency of the prediction accuracy on the prediction horizon. In order to analyze
the dependency, we decimate the original time series data with sampling period Ts = 1 second at every
rTs second interval, where r = 1, 2, 5, 10. Furthermore, we utilized averaged values of RMSEs and ℓ∞
norms of the prediction error to evaluate the prediction accuracy. We analyzed the dependency of the
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Table 2. Analysis of prediction result for every prediction horizon, r = 1, 2, 5, 10

r AR ARI Proposed

1 RMSE 7.234 7.200 ∗ 7.157
ℓ∞ 82.644 ∗ 79.840 82.272

2 RMSE 13.169 13.370 ∗ 13.000
ℓ∞ 125.92 ∗ 122.66 125.28

5 RMSE 36.675 38.993 ∗ 35.894
ℓ∞ 238.75 246.06 ∗ 238.19

10 RMSE 67.393 69.785 ∗ 66.474
ℓ∞ 319.01 326.96 ∗ 313.23

prediction accuracy on the prediction horizon for 9 sets of 3 hours data that were measured at Minami-
Awaji city, Japan in October, 2014, January and February, 2015.

In a similar way as mentioned in 3.2, the first 75 percent of the data was utilized for modeling and the
remaining data was for prediction experiment. Table 2 shows the prediction accuracy for every prediction
horizon r = 1, 2, 5, 10. In this table, the averages of RMSEs and ℓ∞ norms of all 9 data sets are listed
and the asterisk symbols indicate the best values in each prediction horizon. The ARI model achieves
the highest accuracy in ℓ∞ norm at r = 1, 2 while the proposed modeling method achieves the highest
accuracy in both evaluation index at r = 5, 10. Therefore, we showed the effectiveness of the proposed
method at a longer prediction horizon.

4. Conclusion
In this paper, we proposed a modeling method of wind power output. The proposed modeling method was
composed of a nonlinear function part and an AR model part. The nonlinear function was designed such
that the distribution of its output matches with that of the wind power output. We applied the proposed
method to measured wind power output and illustrated the effectiveness of the proposed method, in
particular, for long step-ahead prediction.

In future work, we consider a more general nonlinear function to shape the distribution of the model
output more accurately.
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Appendix A. Constraint on prediction value
The prediction value obtained by the proposed model takes an unrealistic value. To avoid this problem,
we impose two limitations on the prediction value and the its difference value. Let sat(γ1,γ2)(·) denote
a saturation function whose lower bound and upper bounds are γ1 and γ2, respectively. Then, define
sat(0,pmax)(·) and sat(−β,β)(·) to express the saturations on the prediction value and its difference value,
respectively. Function sat(0,pmax)(·) means that pmax is the maximum rating of the wind power output,
while sat(−β,β)(·) means a constraint of the difference value of the output. For example, we choose the
parameter β as the maximum value of the difference of the modeling data.
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