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Abstract. A comparison between experimental and numerical results for natural convection 

flow generated inside a square cavity filled with water, which has internal protuberances, is 

presented. The cavity is formed by vertical-isothermal and horizontal-adiabatic walls. The built 

prototype is integrated by: a clear glass square cavity, where internal protuberances are located; 

a cavity with water which maintains one of its walls at low temperature; an electrical resistance 

which preserves another wall at high temperature; and an array of mirrors. The experimental 

flow development was studied with a Particle Image Velocimetry (PIV) device. Furthermore, 
ANSYS software was used and mass, momentum and energy equations were numerically 

solved. Results were compared using a system with rectangular, semi-circular, and triangular 

protuberances versus a system without protuberances; it was found that: a) the maximum 

positive value of the vertical velocity decreased 7.12, 3.33 and 3.03%, respectively, for the 

experimental case, and 4.52, 2.26 and 1.27%, respectively, for the numerical case; b) the 

maximum positive value of the horizontal velocity decreased 18.37, 11.89 and 4.59%, 

respectively, for the experimental case, and 6.46, 4.75 and 2.47%, respectively, for the 

numerical case; c) the average Nusselt number decreased 10.52, 7.95 and 6.06%, respectively, 

for the experimental case, and 12.01, 9.06 and 3.02%, respectively, for the numerical case. 

1. Introduction 

In natural convection fluid movement results from buoyancy forces imposed on the fluid when its 

density in the vicinity of the heat transfer surface decreases or increases as a result of warming or 

cooling processes. Natural convection is a process of energy transport by the combined action of heat 

conduction, energy storage, and movement of matter. The complexity of the majority of the cases 

involving the transfer of heat by natural convection makes it impossible to have an exact analysis of 

the equations of conservation, having to resort to numerical simulations or experiments. The objective 

of this study is to compare the experimental and numerical results of the flow field in a square cavity 

filled with water, in four cases: without internal protuberances, and with internal rectangular, semi-

circular and triangular protuberances, located symmetrically on the lower part of the system, as 

illustrated in Figure 1. The experimental analysis is accomplished by building a model that consists of: 

a square cavity of transparent glass that houses the internal protuberances under study; a cavity with 

water that maintains one of its walls at low temperature; an electric heater that keeps its wall at high 
temperature; and an arrangement of mirrors to aid light reflection. The experimental development of 
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the flow is done with a Velocimetry by Images of Particles device (PIV). Regarding, numerical 

solution, the equations of conservation of mass, momentum and energy are solved for permanent, two-

dimensional, flow, together with the boundary conditions, using the finite element numerical method, 

by means of the ANSYS software. 

 

 

Figure 1. Physical representation of the problem and reference axes (dashed lines) for the analysis. 

 

From the experimental point of view, the phenomenon of natural convection in cavities has been 

studied by various researchers. Some studies relating to this work are: Corvaro and Paroncini [1], 

experimentally analysed the natural convection in a square cavity full of air, with a rectangular 

fountain located at the bottom. The structure of the flow was analyzed for different numbers of 

Rayleigh and different positions of power source. The experimental apparatus used was a 2D-PIV, 

which determined the fields of streamlines and velocity maps. Corvaro et al. [2], experimentally 

analyzed the natural convection in a square cavity filled with air at atmospheric pressure using a PIV 

and holographic interferometry. Two (hot and cold) plates on the vertical sides of the box were placed. 

They investigated the relationship between the dynamic and temperature fields to describe how the 

flow and transfer of heat in the interior of the cavity were influenced by the temperature of the hot 

plate and the position of the cold plate. Nardini and Paroncini. [3], analyzed the effects on natural 

convection caused by the variation of the dimensions and positions of heat sources on the side walls of 

a square cavity filled with air. Temperature distributions were obtained, heat transfer coefficients were 

experimentally measured, using the holographic interferometry technique and compared to numerical 

results. On the other hand, reports relating to this topic, but from the numerical point of view are: 

Kaviany [4], numerically analyzed temperature fields and streamlines in a square cavity filled with air, 

with a semi-circular protuberance. The vertical walls were considered at constant temperature. The top 

and bottom surfaces were treated as adiabatic. Results of the number of Nusselt and maximum values 

of the stream function for a range of 101<Ra<104 Rayleigh number and radii of the protuberance of 0, 

0.2, and 0.4, are presented. Qi-Hong [5], numerically analyzed natural convection in a square cavity 

filled with air with two or three pairs of sources of heat in the vertical side walls. The analysis focuses 

on the effects of size and arrangement of sources and sinks on flow and heat transfer characteristics. 

Wang and Pepper [6], analyzed laminar natural convection in vertical channels with obstructions 

inside the channels. The results illustrate the temperature fields and streamlines for different 

parameters (number of Rayleigh, geometric relationship and location of obstructions) for smooth and 

blocked channels. 

 

2. Experimental apparatus 

In order to determine the properties of the flow in a square cavity inside with protuberances on the 

inside, we designed and built a test bench consisting of the following elements (Figure 2 - 3): 

• A model, built in 0.006 m-thick glass, 0.4 m long, 0.22 m in height and 0.05 m in width. The 

model contains in itself: a system of mirrors which lights up the inside of the cavity and prevents the 

generation of shadows; a water tank of 0.14x0.1x0.05 m with an aluminum wall that provides the low 

temperature of the system; a 300 W electrical resistance mounted on an aluminum plate that provides 

the high temperature of the system; and a cavity of 0.08x0.1x0.05 m, which is the area of study. The 

protuberances were built in black-painted PVC to avoid light reflections. The rectangular protuberance 
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is 0.02 m base by 0.01 m in height, semi-circular protuberance has 0.010 m radius, and triangular 

protuberance is 0.028 m base by 0.014 m height. 

• An electrical resistance of 300 W in the form of rectangular plate of 0.05x0.10 m. 

• A voltage regulator of 120 V input, 0-140 V output and 10 A. 

• A 380801 model EXTECH power Analyzer, with 0-300 W ±0.1 W, 0-200 V ±0.1 V and 0-2 A 

±0.001A ranges. 

• Eight type K thermocouples with a temperature range from -200°C to +1372ºC with a sensitivity 

of 41 µV/°C. Four thermocouples are placed inside the cavity, on the low-temperature aluminum plate 

with four others on the high-temperature aluminum plate with high temperature. 

• A computer with the 8.1 Lab-View software installed. In this case, the program that allows the 

acquisition of data from eight thermocouples was previously prepared. 

• A Dantec Dynamics Velocimetry by Images of Particles (VIP) apparatus. 

 

  

Figure 2. Equipment calibration. Figure 3. Velocimetry equipment and model. 

 

3. Experimental procedure 

Prior to experimentation, electrical resistance was calibrated with the power analyzer, finding that 

when the voltage regulator was operated at 20%, the electrical power was 50 W. This power was 

managed in all the experiments. The temperatures of the thermocouples were measured in steady state, 

from the hot and cold plates, being these of 22.3 and 19.3 °C, respectively. To determine the Nusselt 

number the temperature in the vicinity of the hot wall was determined by placing eight thermocouples 

along its vertical distance. The time that the equipment took achieve steady state was 10 minutes. 

Once these parameters were determined, the methodology described in Lizardi et al. [7] was used. 

 

4. Mathematical formulations 

The physical model consists of an enclosure of height and width H, the left vertical wall is at a high 

temperature Tc and the right temperature, at a low temperature Tf. The upper and lower walls are 

thermally insulated. Four settings were handled: cavity without protuberances on the inside and with 
rectangular, semi-circular and triangular protuberance in the background, as illustrated in Figure 1. 

The cavity was full of an incompressible Newtonian fluid, with constant physical properties, except 

for density in the term of buoyancy (Boussinesq approximation). Under these conditions, the density is 

considered as a linear function of the temperature,   
oo

TT1  , Incropera and DeWitt [8]. 

The mathematical approach to the problem of flow promoted by natural convection is defined by the 

equations of continuity (1), quantity of movement in the x and y axis (2) and energy (3). The 

approximation of Boussinesq that considers the physical properties of the fluid to be independent of 

temperature is used in this study, Bejan [9] 
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Appropriate boundary conditions for the system, Figure 1, are 

 

x=0, u=v=0, T=Tc;  x=H, u=v=0, T=Tf; y=0, u=v=0; y=H, u=v=0 (4) 

 

5. Numerical treatment 

To solve the equations of motion governing inside of system (1), (2) and (3), together with the 

boundary conditions (4), the method of the ANSYS finite element software was used. The following 

methodology was used, Moaveni and Saeed [10]: 

a) The analysis, in this case FLOTRAN type is selected in the software. 

b) The geometry to be analyzed is drawn, and elements in the boundaries are generated. In this case 

the cavity was dimensioned with a height and width of 0.08 m. The generation of nodes and elements 

was as follows: in the system without protuberance 3364 nodes with 6498 elements; in the rectangular 

protuberance 3428 nodes with 6604 elements; in the semi-circular protuberance 3449 nodes with 6664 

elements; and in the triangular protuberance 3372 nodes with 6512 elements. 

c) The value of the properties of the fluid, in this case water, which remain constant: dynamic 

viscosity, specific heat and thermal conductivity, volumetric expansion coefficient was fed. The 

density was handled as variable and pressure was modeled with the algorithm of relaxation (TDMA). 

d) Boundary conditions were inserted and the software, was programmed for a maximum of 500 

iterations. The foregoing was sufficient to reach the convergence of the problem. 

It is worth mentioning that when the values of the thermophysical properties of water and the 

conditions of the cavities were fed, we obtained numbers of Prandtl of 6.87 and Rayleigh 2.705x106. 

 

6. Results and discussion 

The experimental and numerical results of the fields of velocity, in m/s, are respectively presented in 

Figures 4-11. It can be observed that in the vicinity of the walls with high and low temperature fluid 

moves vertically towards the top and bottom boundary, respectively. In upper and lower adiabatic 

walls movement of the fluid is to the right and left, respectively. The combination of these flows 

generates a rotary motion in a clockwise direction. In Figure 12 the numerical and experimental results 

of vertical velocity, in m/s, for different positions in the x-axis and a location on the shaft “y” of 0.04 

m, can be observed. For the non-protuberance system, the component of velocity starts out at zero. 

Following it can be observed that the flow of the hydrodynamic boundary layer is directed vertically 

toward the upper border. It can be seen that the magnitude of the vertical velocity increases up to a 

maximum of 6.60x10-4 and 7.07x10-4 m/s, respectively, and from there it begins to decrease to a value 

close to zero. From this point there are small fluctuations of the component of velocity along the 

central part of the system. Finally, the area of the other hydrodynamic boundary layer where now the 

flow is directed toward the lower border is observed. In this part the vertical velocity increases up to a 

maximum negative of -6.83x10-4 and -6.99x10-4 m/s, respectively, and from there again its magnitude 

decreases until it reaches zero. The same behavior is observed for the systems with rectangular, semi-

circular, and triangular protuberance but with different values, in this case the maximum positive 

magnitudes are 6.13x10-4 and 6.75x10-4 m/s, 6.38x10-4 and 6.91x10-4 m/s, 6.40x10-4 and 6.98x10-4 m/s, 

respectively, and the negative are -6.18x10-4 and -6.73x10-4 m/s, -5.92x10-4 and -7.32x10-4 m/s, -

6.70x10-4 and -6.81x10-4 m/s, respectively. In Figure 13 the numerical and experimental results of 

horizontal velocity, in m/s, for different positions in the shaft “y” and for a location on the x-axis of 

0.04 m are presented. For the non-protuberance system, the component of velocity starts out at zero. 

Then, the zone of the hydrodynamic boundary layer is subsequently observed where flow is directed 

horizontally towards the left border. It can be seen that the magnitude of the horizontal velocity 

increases up to a maximum negative of -6.40x10-4 and -7.95x10-4 m/s, respectively, and from there it 

VIII International Congress of Engineering Physics IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 792 (2017) 012022 doi:10.1088/1742-6596/792/1/012022

4



 

 

 

 

 

 

decreases down to a value close to zero; from that point there are small fluctuations of the component 

of velocity along the central part of the system. The area of the other hydrodynamic boundary layer is 

observed; now the flow is directed towards the right border. There, the horizontal velocity increases up 

to a positive maximum of 4.79x10-4 and 5.26x10-4 m/s, respectively, and from there again it decreases 

down to zero. The same behavior is observed for the systems with rectangular, semi-circular, and 

triangular protuberance but with different values, in this case the maximum negative magnitudes are -

4.91x10-4 and -5.28x10-4 m/s, -5.73x10-4 and -6.78x10-4 m/s, -6.01x10-4 and -7.52x10-4 m/s, 

respectively, and the positive are 3.91x10-4 and 4.92x10-4 m/s, 4.22x10-4 and 5.01x10-4 m/s, 4.57x10-4 

and 5.13x10-4 m/s, respectively. 

 

    

Figure 4. Experimental 

velocity field, V


, 

without protuberance. 

Figure 5. Numerical 

velocity field, V


, 

without protuberance. 

Figure 6. Experimental 

velocity field, V


, with 

rectangular protub. 

Figure 7. Numerical 

velocity field, V


, with 

rectangular protub. 
 

    

Figure 8. Experimental 

velocity field, V


, with 

semi-circular protub. 

Figure 9. Numerical 

velocity field, V


, with 

semi-circular protub. 

Figure 10. 

Experimental velocity 

field, V


, with 

triangular protuberance. 

Figure 11. Numerical 

velocity field, V


, with 

triangular 

protuberance. 
 

  

Figure 12. Distribution of horizontal velocity (m/s) 

for the x=0.04 m position and four protuberances. 

Figure 13 Distribution of vertical velocity (m/s) 

for the y=0.04 m position and protuberances. 

 

On the other hand, for the calculation of the number of Rayleigh, local Nusselt number and average 

Nusselt number the equations (7) are used. The average Nusselt numbers are shown in Table 1. 
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Table 1. Average Nusselt’s numbers 

 Without protub. Triangular protub. Semi-circular protub. Rectangular protub. 

Experimental 13.21 12.41 12.16 11.82 

Numerical 13.90 13.48 12.64 12.23 

 

The experimental and numerical results showed that both the vertical velocity component and 

horizontal are diminished by placing the protuberances, finding the highest value in the cavity without 
protuberance and lowest in the rectangular protuberance. The presence of protuberances generated that 

in thermal convection occurred a decrease in the average number of Nusselt both for numeric and 

experimental cases. 

 

7. Conclusions 

When comparing the results between systems with rectangular, semi-circular and triangular 

protuberance, respect to that with no protuberance, it was found that: a) the maximum positive value 

of the vertical velocity was reduced: 7.12, 3.33, and 3.03%, respectively, for the experimental case and 

4.52, 2.26, and 1.27 %, respectively, for the numerical case, b) the maximum positive value of the 

horizontal velocity was reduced: 18.37, 11.89 and 4.59%, respectively, for the experimental case and 

6.46, 4.75 and 2.47%, respectively, for the numerical case, c) the average values of Nusselt number 

decreased: 10.52, 7.95 and 6.06%, respectively, for the experimental case and 12.01, 9.06 and 3.02%, 

respectively, for the numerical case. The results can be used to design different equipment heat 

transfer by natural convection, for example, solar collectors, electric transformers, etc. 
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