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Abstract. In a spectacular experiment of the year 2000 Edagawa et al. observed white spots
in HRTEM images of d-Al-Cu-Co, which formed the vertices of a tiling. On a time scale of
seconds to minutes the spots changed positions corresponding to phason flips. To illuminate
the origin of the spots, their jump mechanism and frequencies we employ a structure model of
Zeger and Trebin of 1996. It consists of quasiperiodic double layers stacked periodically by 4.18
Å. Each double layer contains rings of ten atoms whose centers form the vertices of a Tübingen
triangle tiling. Correlated jumps of two atoms in each sublayer cause a simpleton phason flip
of the entire ten ring. The stacking of the double layers leads to columns of the ten rings which
might be interrupted due to the flips. Columns which contain a critical minimum number of
complete ten rings are considered visible as white spots. Simultaneous appearences of vertices
and their flipped positions give rise to the pentagonal Penrose pattern as observed by Edagawa
et al. and also in other experiments. Postulating microscopic flip rates for the correlated jumps
of pairs of atoms in the sublayers we calculate the probabilities for the numbers of complete ten
rings in a column and confirm the mesoscopic time scales for the jumps of the white spots.

1. Introduction

Phasons are elementary excitations peculiar to quasicrystals. The notion comprises alternate
positions of vertices and their flips in quasicrystalline structures. If these vertices are occupied
by atoms, they are separated by a few angstrøms, and the time between the flips is of the order
of picoseconds. The first direct observation of phason flips in a quasicrystal was reported by
Edagawa et al. in a widely noticed article of the year 2000 [1]. The authors detected white
spots in HRTEM images of decagonal Al65Cu20Co15, which formed the vertices of a pentagonal
Penrose tiling and which performed phason flips. The spots themselves, however, had diameters
and separations in the order of nanometers. The time between their flips ranged from seconds
to minutes. In the present contribution we attempt to explain the spots and their jumps by
taking recourse to a structural model for decagonal Al-Cu-Co established by Zeger and Trebin
in 1996 [2]. It contains columns of rings with ten atoms whose projections form the vertices
of a Tübingen triangle tiling. We interpret these columns as the positions of the white spots.
By collective jumps of atoms a column or part thereof can perform a simpleton flip of the
triangle tiling. If the part which has flipped is large enough, both the original white spot and
the flipped position are visible. In this way the original Tübingen triangle tiling turns over into
the pentagonal Penrose tiling, which Edagawa et al. [1] and others (for example Ref. [3]) claim
to observe. By postulating microscopic flip rates for the jumps of individual atoms we calculate
the probabilities for jumps of the white spots and confirm the mesoscopic time scales.
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2. Model for the structure of d-Al-Cu-Co

2.1. Model of Zeger and Trebin

The structural model of Zeger and Trebin [2] which we apply here is a slight modification of
a model, which Burkov proposed in 1993 [4] based on experimental data of Steurer of 1990
[5]. It consists of quasiperiodic double layers stacked periodically by 4.18 Å. The projection of
each double layer is a complex decoration of the two golden triangles comprising the decagonal
Tübingen triangle tiling (Fig. 1). There are 34 atoms in the large and 21 in the small triangle.
The composition is Al62Cu19Co19. Each vertex of the tiling is the center of a ring of ten atoms.
These rings form a column along the stacking axis. We join the assumption in the literature
that these columns are to be identified with the white spots. Zeger and Trebin [2] documented a
self-similarity both for the structure and the dynamics of the model. The structure is equivalent
to a three times deflated triangle tiling containing at most two atoms in a triangle. In the highest
deflation step one finds closely neighbored oriented rhombs in each layer, consisting of two large
and two small golden triangles (Fig. 1). There is an aluminum atom on the central vertex and
one within one of the large triangles. Through correlated jumps of these two atoms, each by
0.87 Å, the inner vertex performs a simpleton flip and the rhomb reverses its orientation. If this
flip is occurring in the rhomb of the lower and the upper layer simultaneously, then an entire
ten-ring of atoms is jumping and performing a simpleton flip in the initial, undeflated tiling
(Fig. 1).

x = 0

x = 1

Symbols: N Cu � Co • Al

Figure 1. Double layer in the model structure for d-Al-Cu-Co. Empty and filled symbols
denote atoms in the lower and upper layer, respectively. Each vertex is surrounded by
a ring of ten atoms. The aluminum atoms of a ring belong to rhombs (dashed) of the
deflated tilings (left figure). A rhomb can change from its original state (x = 0) to a
reflected one (x = 1) by a simpleton flip. While doing so the Al atom inside the large
triangle moves by 0.87 Å to the new vertex position; the previous vertex atom leaves by
the same distance for the interior of the freshly formed large triangle. If both rhombs
perform this flip (from state 00 to 11) an entire ten-ring is jumping in the original,
undeflated tiling (right figure) [2].

2.2. Visibility criteria

Let us now consider a number N of (single) layers as in Fig. 2 and attach to each layer the state
x = 0 or x = 1 of its small rhomb. Whenever we find successive states 00 or 11, a complete
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Figure 2. First col-
umn: numbering of the
single layers. Second
column: relative flipping
probability of a single
small rhomb. Third col-
umn: state of the small
rhomb and cluster struc-
ture. Forth column and
adjacent rings: state of
the double layer, forming
a ten-ring to the left if of
type 00, to the right if of
type 11.

ten-ring is found in the original or flipped state, respectively. We denote their numbers by n00

and n11 and introduce a visibility parameter α between 0 and 1. A white spot is assumed visible,
whenever n00 > αN or n11 > αN . When α is smaller than 1

2
it might occur that both unflipped

and flipped positions are visible. In the insert of Fig. 3 we display the original HRTEM image
of Edagawa et al. (Fig. 2 of Ref. [1]) where we have imposed a part of the model of Zeger and
Trebin [2] (black). The white lines denote the rhomb, pentagon and hexagon by which Edagawa
et al. depicted a section of the pentagonal Penrose tiling before and after the flip (Fig. 3 of
Ref. [1]). To the right of this insert the corresponding section of a Tübingen triangle tiling is
drawn. The blue vertices are positions of the basic tiling, the green ones positions of simpleton
flips, comprising a first deflation stage. The colored lines connect vertices corresponding to those
of the HRTEM image. Further flips can proliferate the vertices and give rise to the pentagonal
Penrose tiling.

3. Visibility probabilities and dynamics

For analyzing visibility probabilities of the white spots and from there the mesoscopic flipping
times, the notion of clusters is very useful. A cluster is a consecutive series of identical states of
the small rhombs in the single layers, see colored sections in the third column of Fig. 2.
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Figure 3. Left: HRTEM image of Edagawa et al. [1] with imposed tiles of the pentagonal
Penrose pattern before and after the flip (white) and model of Zeger and Trebin [2] (black).
Right: Corresponding section of a Tübingen triangle tiling (blue) and simpleton flipped
positions (green).

If the number Sc of clusters is small, then the number of complete ten-rings is large, which
becomes clear by the very simple relation nv := n00+n11 = N−Sc. To determine the probability
for Sc clusters to occur we have associated relative jump rates to the small rhomb in a single
layer. The highest rate γ > 1 is assigned, if the adjacent layers are in the same state, but
different from the considered layer. If the rhombs in a layer and its neighbors are pointing
to the same direction, the lowest jump rate γ = 1 is postulated. An intermediate rate

√
γ is

assumed, if the neighbors differ in their state. Thus we favor the formation of clusters.
By enumerating all flip processes which change the number of clusters in combination with

kinetic Monte Carlo simulations we found that the numbers of clusters Sc are binominally
distributed, as consequently are also nv, n00 and n11. The probabilities were calculated for one
spot to appear, for two spots and for none. Finally the mesoscopic flip rates were derived. There
are ranges of the jump rate γ and the visibility parameter α where these probabilities and the
mesoscopic flip rates agree with the data of the video clips of Edagawa et al. [1]. Details are
found in the thesis of Hansjörg Lipp [6].
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