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Abstract. Many astrophysical fluids are in turbulent state. To maintain turbulence, energy
must be injected into the fluid. In turbulence simulations, it is customary to drive the fluids
on a scale comparable to the size of the computational domain. In this paper, we show how
some statistics of turbulence, especially turbulence statistics projected on the plane of the sky,
is changed when we do not follow the conventional approach. As an example of such a statistics,
we discuss in detail how the Chandrasekhar-Fermi method is affected by the small-scale driving,
which is a simple and powerful technique for estimating the strength of the mean magnetic field
projected on the plane of the sky.

1. Introduction
Driving is required to initiate and maintain turbulence. When hydrodynamic turbulence is
driven on a scale Lf , the injected energy cascades down to small scales and, when the energy
cascade reaches the dissipation scale Ld, the energy is lost through viscous damping. The energy
spectrum of turbulence peaks at the driving wavenumber kf and shows a power-law scaling in
the range between kf and the dissipation wave number kd. The spectrum drops rapidly for
wavenumbers larger than kd.

In turbulence simulations, the driving scale Lf is usually very close to the computational box
size Lsys. The reason for this is to maximize the inertial range. Let us assume Lsys = 2π
throughout the paper. In most turbulence simulations, the dissipation wavenumber kd is
determined by the numerical resolution: kd is slightly smaller than the maximum wavenumber
Nx/2, where Nx is the number of grid points in one direction. Therefore, in order to maximize
the inertial range, it is necessary to drive turbulence near k ∼ 1, which means kf ∼ 1 and
Lf ∼ Lsys = 2π.

In astronomy, observed quantities are usually integrated along the line-of-sight (LOS). Since
observed quantities are two-dimensional (2D) data, obtaining three-dimensional (3D) quantities
from observations is not easy. Nevertheless, there are techniques developed to derive 3D
turbulence properties from 2D observations. However, those techniques have an intrinsic
shortcoming: it is difficult to verify them. To overcome this difficulty, people use computer
simulation data to verify their techniques.

One such example is the Chandrasekhar-Fermi (CF) method [1], which is a powerful technique
for estimating the strength of the plane-of-the-sky component of the mean magnetic field, B0,sky.
The CF method makes use of polarized emission from magnetically aligned dust grains. In the
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conventional CF method, we can obtain an estimate of B0,sky from

B0,sky = ξ
√
4πρ̄

δvlos
δϕ

, (1)

where ξ is a constant of order unity, ¯rho is average density, δvlos is the LOS velocity dispersion
(or, typical width of an optically thin emission line), and δϕ is the variation of the polarization
angle. Researchers used numerical simulations to verify the technique and obtain the value of ξ
[2, 3, 4].

In this paper, we demonstrate that we should be careful in using simulations to verify a
theoretical method: if we do not take into account the driving scale, it is possible to make a
mistake. We focus on the CF method. In section 2, we show that the conventional CF method is
prone to such a mistake. To be specific, we show that the conventional CF method overestimates
B0,sky by a factor of

√
Neddy, where Neddy is the number of independent eddies along the LOS.

Note that Neddy ≈ Lsys/Lf in simulation data. In Section 3, we introduce our modified CF
method (see [5] for details). In Section 4, we provide discussions and summary.

2. The conventional Chandrasekhar-Fermi (CF) method
2.1. Derivation of the conventional CF method
Consider a turbulent medium with a mean magnetic field (B3D

0 ) and a fluctuating magnetic
field (b3D). For simplicity, let us assume that the mean magnetic field is along the x direction
and the LOS is along the z direction. In this setup, the strength of the plane-of-the-sky mean
magnetic field (B3D

0,sky) is just B
3D
0 :

B3D
0,sky = B3D

0 , if B3D
0 ⊥ LOS. (2)

Let us consider a fluid filled with Alfvén waves or Alfvénic turbulence. In Alfvénic
disturbances, the r.m.s. fluctuation of magnetic field (δb3D) and the r.m.s. velocity (δv3D) are
related by

δb3D√
4πρ̄

∼ δv3D or 1 ∼
√
4πρ̄

δv3D

δb3D
, (3)

where ρ̄ is average density. Since we are dealing with Alfvén waves, we assume the density
is constant. If we multiply both sides by the mean plane-of-the-sky magnetic field B3D

0,sky, we
obtain

B3D
0,sky ∼

√
4πρ̄

δv3D(
δb3D/B3D

0,sky

) . (4)

It is relatively easy to estimate the numerator on the right-hand side (i.e. δv3D) from
observations. If we observe the turbulent medium using an optically thin molecular emission
line, then the width of the emission line profile (≡ δvlos) is approximately ∼ δv3D:

δv3D ∼ δvlos. (5)

Note that δv3D roughly corresponds to the typical length of the velocity vectors in the 3D space,
which is ∼

√
3 times larger the typical length of the LOS velocity vectors in the 3D space (see

red arrows in Figure 1(a)).
Estimation of the denominator on the right-hand side of Equation (4) is rather tricky. Suppose

that we have coherent Alfvén waves (see Figure 1(b)). In this case, it is trivial to show that

b2Dy
B2D

0,sky

=

∫
b3Dy dz∫

B3D
0,skydz

=
b3Dy

B3D
0,sky

, (6)
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where B2D
0,sky is the plane-of-the-sky mean magnetic field, which is proportional to B3D

0,sky

integrated along the LOS, and b2Dy is the y component of the plane-of-the-sky magnetic field,

which is proportional to b3Dy integrated along the LOS. Note that, if we ignore the fluctuating

magnetic field in the x direction, B2D
0,sky and b2Dy are proportional to the x and y components of

the plane-of-the-sky magnetic field, respectively, measured by a distant observer located on the
z axis. Therefore, the ratio b2Dy /B2D

0,sky determines the direction of the observed magnetic field
on the plane of the sky. From (6), we can write

δb3Dy
B3D

0,sky

= δ

(
b3Dy

B3D
0,sky

)
= δ

(
b2Dy

B2D
0,sky

)
=

δb2Dy
B2D

0,sky

= δ (tanϕ) ∼ δϕ, (7)

where ϕ is the angle between the plane-of-the-sky magnetic field and the mean plane-of-the-sky
magnetic field (∝ B2D

0,sky) and δϕ is its variation.
Since the polarized emission from magnetically aligned dust grains is perpendicular to the

direction of the observed magnetic field on the plane of the sky, the angle ϕ in Equation (7) is
virtually identical to the polarization angle with respect to the average polarization direction.
Therefore, if we observe the variation of polarization angle (i.e. δϕ), we can obtain an estimate
for the denominator in Equation (4).

In summary, the conventional CF method can be written by

B3D
0,sky ∼ ξ

√
4πρ̄

δvlos
δϕ

, (← for coherent waves) (8)

where ξ is a constant of order unity. Note that we have assumed that Alfvén waves are coherent
(see Figure 1(b)) to obtain this relation.

2.2. A problem with the conventional CF method
In the previous subsection, we have assumed that Alfvén waves are all in phase. In this case,
the conventional CF method should work fine. But, if either Alfvén waves have different phases
or they form turbulence, then the conventional CF method needs modification.

Suppose that we have Alfvénic turbulence. Then, several large-scale eddies can exist along
the LOS (see Figure 1(c)). It is natural to assume that physical quantities do not change much
inside each large-scale eddy. For example, we may assume that the value of b3Dy is roughly

constant in each large-scale eddy. However, the direction of b3Dy may change from eddy to eddy.

Therefore, if we integrate b3Dy along the LOS, we have

b2Dy ∝
∫

b3Dy dz ∼ δb3Dy Lf

√
Neddy, (9)

where Neddy (≈ Lsys/Lf ) is the number of large-scale eddies along the LOS and Lf is the driving
scale of turbulence. Note that the typical size of the large-scale eddies is similar to the driving
scale Lf .

Since the direction of the 3D mean magnetic field does not change along the LOS, integration
of B3D

0,sky is different from that of b3Dy :

B2D
0,sky ∝

∫
B3D

0,skydz = B3D
0,skyLsys = B3D

0,skyLfNeddy. (10)

From Equations (9) and (10), we have

b2Dy
B2D

0,sky

∼
√
Neddy

b3Dy
B3D

0,sky

, (11)
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Figure 1. Observations of velocity and magnetic field. The line of sight (LOS) is along the
z direction and the sky plane is parallel to the xy plane. For simplicity, we assume density is
constant. (a) The width of an optically thin line is equal to the LOS velocity dispersion δvlos.
(b) When Alfvén waves are all in phase, we have b2Dy /B2D

0,sky = b3Dy /B3D
0,sky, where b

2D
y and B2D

0,sky
are magnetic fields integrated along the LOS. (c) When Alfvén waves are out of phase, we have
b2Dy /B2D

0,sky < b3Dy /B3D
0,sky due to random-walk-like behavior of b3Dy . (d) The centroid velocity

Vc is an average velocity. The area of a line profile on the left-hand side of Vc and that on the
right-hand side of Vc are same.

which is obviously different from the relation for coherent waves in Equation (6). If we insert
this relation into Equation (4), we get

√
NeddyB

3D
0,sky ∼

√
4πρ̄

δvlos
δϕ

, (← for turbulence) (12)

where we have replaced δv3D with δvlos and used relations in Equation (7). Equation (12) implies
that the conventional CF technique (see the right-hand side of the equation) overestimates B3D

0,sky

by a factor of
√
Neddy.

Another way to look at this problem is that, when there are many independent eddies along
the LOS, δϕ becomes reduced due to averaging effects, which makes the conventional CF method
to overestimate B3D

0,sky. This averaging effect, in fact, has been discussed by earlier researchers
(see, for example, [6, 7, 8]).
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2.3. Numerical tests of the conventional CF method
We use direct numerical simulations to test the conventional CF method (see [5] for details). We
solve the following compressible MHD equations in a periodic box of size 2π using an Essentially
Non-Oscillatory scheme (see [9]):

∂ρ/∂t+∇ · (ρv) = 0, (13)

∂v/∂t+ v · ∇v + ρ−1∇(C2
sρ)− (∇×B)×B/4πρ = f , (14)

∂B/∂t−∇× (v ×B) = 0, (15)

with ∇·B=0 and an isothermal equation of state P=C2
sρ, where Cs is the sound speed and ρ is

density. Here v is the velocity, B is the magnetic field, and f is the driving force. We use 5123 grid
points. In our simulations, Cs = 0.1, ρ̄ = 1, and B0/

√
4πρ̄ = 1. In all simulations, the r.m.s.

velocity vrms is between ∼0.7 and ∼0.8, and the sonic Mach number is Ms ≡ vrms/Cs ∼ 7.
Since the Alfvén speed of the mean field (VA = B0/

√
4πρ̄) is 1, the Alfvén Mach number is

MA ≡ vrms/VA ∼ 0.7, which means that turbulence considered here is sub-Alfvénic.

Table 1. Simulations

Runs Resolution Sonic Mach number(Ms) B3D
0,sky/

√
4πρ̄ kf Neddy (= Lsys/Lf )

KF3 5123 ∼7 1 3 ∼ 3
KF5 5123 ∼8 1 5 ∼ 5
KF10 5123 ∼7 1 10 ∼ 10
KF20 5123 ∼7 1 20 ∼ 20

We perform 4 different simulations with different driving wavenumbers (see Table 1). The
driving wavenumbers are kf=3, 5, 10, and 20, respectively and the corresponding driving scales
are Lf=Lsys/3, Lsys/5, Lsys/10, and Lsys/20, respectively. Note that the number of independent
eddies along the LOS is ∼ 1/kf .

Except the driving scale, other conditions are virtually same (see Table 1). Using the MHD
turbulence data and numerical method in Ref. [10] (see also [4]), we obtain synthetic polarization
maps arising from magnetically-aligned dust grains at a far-infrared/sub-mm wavelength. Using
the polarization maps, we calculate δϕ. We also calculate δvlos using the turbulence data. After
getting δϕ and δvlos, we calculate the quantity

√
4πρ̄

δvlos
δϕ

, (16)

which is proportional to B3D
0,sky in the conventional CF method. Since B0/

√
4πρ̄ = 1 in all our

simulations, the above expression should be constant if the conventional CF method is correct.
We plot the results in the left panel of Figure 2. As we can see in the figure, the conventional
CF method overestimates B3D

0,sky as Neddy (∼ 1/kf ) increases.

3. A Modified CF Method
3.1. Estimation of Neddy and our modified CF method
Since the conventional CF method overestimates B3D

0,sky by a factor of
√
Neddy, we need to

know Neddy to correct it. In this subsection, we show that variation of centroid velocity δVc is
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Figure 2. Estimates of B3D
0,sky/

√
4πρ, which is 1 in our simulations, from the conventional CF

method (left panel) and our modified CF method (right panel). (Left) The conventional CF
method overestimates B3D

0,sky if kf is large. Note that, if turbulence is driven near kf , there
are ∼ kf independent eddies along the LOS. (Right) Our modified CF method returns better
estimates of B3D

0,sky even if kf is large. From [5].

proportional to
√
Neddy (see [5] for details). The centroid velocity is a kind of average velocity.

When we have an emission line with intensity profile I(v), the centroid velocity is defined by

Vc =

∫
vlosI(vlos)dvlos

/∫
I(vlos)dvlos. (17)

Suppose that there are Neddy independent eddies along a LOS (see Figure 1(d)). Each eddy
has typical LOS velocity vlos,i, which we denote as vi for simplicity. Although vi’s are not
directly observable, we can consider the following sum for the LOS:

v1 + v2 + ...+ vNeddy
. (18)

Now, let us consider similar summations for many different LOS’s. Since we have now many
summations, we can calculate the standard deviation of the summations. Note that vi’s
show a random-walk-like behavior and the summation in Equation (18) corresponds to the
net displacement of a one-dimensional random walk. Therefore, the standard deviation of the
summations follows

Standard deviation of (v1 + v2 + ...+ vNeddy
) ∼

√
Neddyδvlos, (19)

which becomes

Standard deviation of (v1 + v2 + ...+ vNeddy
)/Neddy ∼

δvlos√
Neddy

. (20)

The left-hand side is equal to the standard deviation of the (arithmetic) average velocity.
Centroid velocity is also a kind of average velocity. Therefore, we expect that the standard
deviation of centroid velocity also follows a similar scaling:

δVc ∼
δvlos√
Neddy

. (21)
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From Equations (12) and (21), we have

B3D
0,sky ∼

√
4πρ̄

δvlos
δϕ

1√
Neddy

∼
√
4πρ̄

δvlos
δϕ

δVc

δvlos
∼
√
4πρ̄

δVc

δϕ
. (22)

Therefore, our modified CF method becomes

B3D
0,sky = ξ′

√
4πρ̄

δVc

δϕ
, (23)

where ξ′ is a constant of order unity that can be determined by numerical simulations.

3.2. Numerical tests of the modified CF method
The right panel of Figure 2 shows our main result, in which we plot estimates of B3D

0,sky/
√
4πρ̄

from our modified CF method:
δVc

δϕ
. (24)

In the panel, we can see that the estimates do not depend on the driving scale strongly and are
fluctuating between ∼1.0 and ∼1.5. Therefore, since B3D

0,sky/
√
4πρ̄ = 1 in our simulations, the

constant ξ′ in Equation (23) is between ∼0.7 and ∼1.

4. Discussions and Summary
In this paper, we have considered the effects of driving scale on the estimates of the mean plane-
of-the-sky magnetic field B3D

0,sky from the Chandrasekhar-Fermi (CF) method. We have shown

that the conventional CF method tends to overestimate B3D
0,sky if the driving scale is smaller than

the system size and proposed a modified CF method that can correct the effect. The method we
propose in Equation (23) with 0.7 < ξ′ < 1.0 does not require new observations [5]. That is, the
method is readily applicable for present observational data. Apart from numerical constants,
the only difference between our method and the conventional CF method is that our method
requires the standard deviation of velocity centroids δVc, while the conventional method requires
average width of the emission line profiles δvlos. The standard deviation of velocity centroids
δVc can be easily obtained from existing optically-thin emission line profiles. If such emission
line profiles (I(vlos)’s) are available for nobs lines of sight, then we need the following two steps
to obtain δVc:

(i) We calculate the centroid velocity Vc (see Equation (17)) for each line of sight. Let Vc,i be
the centroid velocity for line of sight i:

Vc,i =

∫
vlosIi(vlos)dvlos

/∫
Ii(vlos)dvlos, (25)

where Ii(vlos) is the optically-thin emission line profile for the line of sight.

(ii) We calculate δVc from the formula

δV 2
c ≡

1

nobs

nobs∑
i=1

V 2
c,i −

(
1

nobs

nobs∑
i=1

Vc,i

)2

. (26)

In this paper we have demonstrated that the conventional CF method indeed overestimates
the mean plane-of-the-sky magnetic field B3D

0,sky by a factor of
√
Neddy, where Neddy is the

number of independent eddies along the line of sight. We have found that the standard
deviation of centroid velocities divided by the average line-of-sight velocity dispersion (δVc/δvlos)
is proportional to 1/

√
Neddy (Equation (21)). Therefore Equation (23) with ξ′ = 0.7 ∼ 1 provides

a better estimate for B3D
0,sky.



8

1234567890

ASTRONUM 2016  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 837 (2017) 012002  doi :10.1088/1742-6596/837/1/012002

References
[1] Chandrasekhar S and Fermi E 1953 Astrophys. J. 118 113
[2] Ostriker E C, Stone J M and Gammie C F 2001 Astrophys. J. 546 980–1005 (Preprint astro-ph/0008454)
[3] Padoan P, Goodman A, Draine B T, Juvela M, Nordlund Å and Rögnvaldsson Ö E 2001 Astrophys. J. 559
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