
Journal of Physics: Conference
Series

     

PAPER • OPEN ACCESS

Pyglidein – A Simple HTCondor Glidein Service
To cite this article: D Schultz et al 2017 J. Phys.: Conf. Ser. 898 092018

 

View the article online for updates and enhancements.

You may also like
Using ssh and sshfs to virtualize Grid job
submission with RCondor
I Sfiligoi and J M Dost

-

Commissioning the HTCondor-CE for the
Open Science Grid
B Bockelman, T Cartwright, J Frey et al.

-

Geographically distributed Batch System
as a Service: the INDIGO-DataCloud
approach exploiting HTCondor
D C Aiftimiei, M Antonacci, S Bagnasco et
al.

-

This content was downloaded from IP address 18.119.172.146 on 10/05/2024 at 10:53

https://doi.org/10.1088/1742-6596/898/9/092018
https://iopscience.iop.org/article/10.1088/1742-6596/513/3/032088
https://iopscience.iop.org/article/10.1088/1742-6596/513/3/032088
https://iopscience.iop.org/article/10.1088/1742-6596/664/6/062003
https://iopscience.iop.org/article/10.1088/1742-6596/664/6/062003
https://iopscience.iop.org/article/10.1088/1742-6596/898/5/052033
https://iopscience.iop.org/article/10.1088/1742-6596/898/5/052033
https://iopscience.iop.org/article/10.1088/1742-6596/898/5/052033
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsvtDWft2vuHo3q03Wc7KZ1mUf0TLsv5DlXBUyxRwU6wFxGnPo7iFrhmlf4CwwA0SG9t6UBm8LVqtkBgH1hAag8Yz5HKdnpa3ksRncGptL94bruvU4fFdpWGMMJPWcFdtM0k5uS_POIM4KbbigRBM3cjr-FpvEkKWXOjKZeeNwlLak7j38iUvsXW6vJxF_kC2QWuc6yK1-FJYaz-93SoHgp6HtA8QWUA9PRvkxrZ_Hl8vOodQFfZ1VhMFfwAzyJggC1_09nskketVP4FrZxhQGkzcyHBOMS1XE5F67eKpmv-uqfZ4sdiSwkJRQx3uzQ8JpI-6CfUMhEwfwitBCPplp8GRvbaJw&sig=Cg0ArKJSzGo5mdmizXy1&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 092018  doi :10.1088/1742-6596/898/9/092018

 

 

 

 

 

 

Pyglidein –A Simple HTCondor Glidein Service 

D Schultz1, B Riedel2, G Merino1 

1 Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin-Madison, 

222 W Washington Ave, Suite 500, Madison, WI 53703, USA 
2 Computation Institute, Searle Chemistry Laboratory, The University of Chicago, 

5735 South Ellis Avenue, Chicago, IL 60637 

E-mail: david.schultz@icecube.wisc.edu 

Abstract. A major challenge for data processing and analysis at the IceCube Neutrino 

Observatory presents itself in connecting a large set of individual clusters together to form a 

computing grid.  Most of these clusters do not provide a “standard” grid interface. Using a local 

account on each submit machine, HTCondor glideins can be submitted to virtually any type of 

scheduler.  The glideins then connect back to a main HTCondor pool, where jobs can run 

normally with no special syntax.  To respond to dynamic load, a simple server advertises the 

number of idle jobs in the queue and the resources they request.  The submit script can query this 

server to optimize glideins to what is needed, or not submit if there is no demand.  Configuring 

HTCondor dynamic slots in the glideins allows us to efficiently handle varying memory 

requirements as well as whole-node jobs. One step of the IceCube simulation chain, photon 

propagation in the ice, heavily relies on GPUs for faster execution. Therefore, one important 

requirement for any workload management system in IceCube is to handle GPU resources 

properly.  Within the pyglidein system, we have successfully configured HTCondor glideins to 

use any GPU allocated to it, with jobs using the standard HTCondor GPU syntax to request and 

use a GPU. This mechanism allows us to seamlessly integrate our local GPU cluster with remote 

non-Grid GPU clusters, including specially allocated resources at XSEDE supercomputers. 

1.  Introduction 

The IceCube detector [1] is located at the geographic South Pole and was completed at the end of 2010.  

It consists of 5160 optical sensors buried between 1450 and 2450 meters below the surface of the South 

Pole ice sheet and is designed to detect interactions of neutrinos of astrophysical origin.  The IceCube 

Collaboration’s worldwide computing grid consists of many independent clusters that must be 

assembled into a useful whole.  A global shared pool allows for a single submission point.  Not only is 

this a great benefit to users, it also simplifies administration by making it easier to track jobs and monitor 

usage.  IceCube simulations are heavily reliant on GPU computing for photon propagation in ice [2], so 

the shared pool helps maintain a balanced ratio of GPUs to CPUs. Clusters can be all CPU—so cannot 

run the full simulation locally—but still contribute to the shared pool. 

1.1.  Historical use and tests 

The IceProd [3] software framework was developed by IceCube in 2006 to manage distributed 

simulation workloads. It has been used in production for 11 years to handle the data processing and 

simulation needs for the IceCube collaboration.  IceProd instances were run directly on each cluster’s 

submit machine, submitting to the local cluster.  Only IceProd could see the shared pool, making it 

http://creativecommons.org/licenses/by/3.0
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impossible for non-production users to use the resources.  It also required IceProd to know how to submit 

to all cluster types, resulting in extraneous code not related to the main dataset management task.  

Historically, IceProd has been difficult to install at new sites and was a large burden for collaborators.  

We started efforts to simplify remote cluster submission over the last few years, exploring several 

technologies and solutions. 

GlideinWMS [4] is used by the Open Science Grid (OSG) [5] to connect university computing 

resources together into one large HTCondor [6] pool.  The CMS experiment has used this for years to 

aggregate US resources, and has lately expanded this model to its global pool. Pilot jobs start the 

startd HTCondor daemon, remotely connecting to the pool central manager and acting like any other 

node in the pool.  This remote starting of an HTCondor startd daemon is referred to as a glidein.  We 

connected several of our larger sites together using GlideinWMS, with help from OSG.  This is currently 

how IceCube sites running a grid submission compute element (CE) are connected to the global pool.  

Unfortunately, many IceCube sites do not run a CE and cannot be accessed so easily. 

The ATLAS experiment has a similar pilot based workload management system, the AutoPyFactory 

(APF) [7]. With the addition of an HTCondor-G plugin [8], it can also start pilot glideins.  It was tested 

with several European sites that use CREAM CEs [9].  For IceCube’s use, it was not investigated further 

because of the limitation of only submitting to CEs, which we already use GlideinWMS for. 

2.  Pyglidein design 

Two main design elements of pyglidein are the submission to any cluster independent of local batch 

system, and using a polling job submission model rather than the push model used by CEs.  The 

submission independent of local batch system is achieved through a plugin model already tested in 

IceProd.  To poll jobs from the central queue, a client script runs on the local submit machine, queries 

the central queue for jobs and their requirements, and submits matching glideins to the local queue.  

Polling helps to get around any incoming firewalls and works seamlessly with network address 

translation (NAT). 

Another main goal of the pyglidein design is to keep it as simple as possible.  Part of the reason not 

to modify GlideinWMS was its complexity.  For this reason, most of pyglidein was written in Python, 

with only minimal shell scripts when needed.  Additionally, some features that other glidein systems 

support will not appear here.  There are no plans to support other experiments. 

2.1.  Server 

The server is designed to be a lightweight and efficient way to communicate idle job requirements to 

the clients and gather status information on system performance.  A Python script runs as a daemon on 

a machine with an HTCondor schedd daemon.  The HTCondor queue status is queried in 5 minute 

intervals to reduce load on the scheduler.  Idle jobs are recorded and grouped according to resource 

usage. 

The server script uses JSON-RPC [10] through a HTTP server for communication with the outside 

world.  Besides sending a list of idle jobs, the server also receives heart beat and status information from 

the clients.  The HTTP server also has a status page, displaying the current idle jobs and the status of 

connected clients. 

2.2.  Client 

The client script is where most of the logic in selecting and submitting glideins occurs. The first step is 

to contact the server for the idle job list, as mentioned in Section 2.1.  This list is then filtered according 

to the site’s available resources.  For instance, a site may limit memory to under 3 GB. The client will 

consequently ignore any job that requests more than that.  This also plays a large role in GPU matching, 

since most clusters do not have GPUs.  Conversely, some clusters only have (or the allocation might 

only allow for) GPUs, so only GPU jobs are accepted.  The job list is then sorted by resource preference.  

By default, GPU and high memory jobs are considered first. This is a configuration option though. 
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At this point, the client calls the submit method of the configured batch system class, detailed in 

Section 2.2.1.  It is given the resource requirements, as well as the number of jobs to submit with those 

resources.  After submission, monitoring information is sent back to the server to detail the state of the 

client and what it submitted.  If configured, a cleanup command will be called in case a cluster does not 

remove temporary working directories after job completion. 

2.2.1.  Cluster submission.  Batch system translation is built-in to pyglidein.  The client configuration 

file specifies which batch system is in use.  This maps to a class in a python file, which contains native 

commands for that batch system.  Using inheritance avoids code duplication for common functions 

and similarities between batch systems.  Currently supported are several variants of PBS, SLURM, 

Univa Grid Engine (UGE), LSF, and HTCondor.  Each follows a similar pattern.  First, it generates a 

submit file matching the resource requirements.  Then it creates a shell script which, when run, will 

clear the environment (except a list of configured variables) and call the glidein start script.  The 

environment is cleared to prevent interference between local environment variables and the glidein.  

This allows, for instance, our glidein to run inside other glideins from systems mentioned in Section 

1.1.  The client configuration also allows for custom directives to be added to the submit file. This 

helps with cluster-specific configuration, like specifying a user account or project. 

2.3.  Glidein 

The glidein itself runs on the compute node of a cluster and starts an HTCondor startd daemon.  It 

communicates with a centralized HTCondor collector via a shared port and CCB server [11], which 

allows it to run behind most firewalls.  This strategy is built-in to HTCondor and only requires some 

configuration to set up. 

Part of our customization of the glidein was to enable HTCondor partitionable slots [12].  Instead of 

the glidein only starting a single slot that matched the initial request when it was scheduled, it can 

dynamically size itself within those initial bounds.  For example, an initial request for 2 CPUs and 10GB 

of memory can be split into two slots with 1 CPU each.  This extends the usefulness of each glidein 

 
Figure 1 The architectural layout of the pyglidein system. Components of HTCondor relevant to 

glideins are included. 
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beyond a single job.  It also greatly eases the configuration of large or whole machine glideins, as they 

are configured the same as all other glideins. 

The other customization is for GPUs.  We must pass the correct GPU configuration from the cluster 

scheduler to HTCondor and to the executed job.  Part of the submission environment shell script in 

Section 2.2.1 standardizes the incoming GPU information before passing it to the glidein start script.  

This script then configures HTCondor to use a custom GPU resource similar to how CPUs and memory 

are used [13].  It also allows for multiple GPUs to be configured in the same glidein.  When a job slot is 

created with a GPU, the appropriate environment variables are automatically set before the actual job 

starts. 

IceCube relies on CernVM-FS [14] for distributed access of software and small data files.  For sites 

that have CernVM-FS installed, it is used natively.  Otherwise, an I/O interposition agent called Parrot 

[15] is used to make the filesystem appear to exist, dynamically fetching necessary files from the 

network and presenting them to the application in the correct location.  A wrapper script before each job 

starts up checks for the existence of CernVM-FS and, if necessary, starts Parrot. 

3.  Practical usage experiences 

We have now run the pyglidein system in production for one year.  Installing at each cluster is 

significantly easier than the IceProd system, such that it rapidly took the lead as the main simulation 

computing platform.  Our global pool is now larger than ever before.  It has also allowed us to easily 

share the distributed pool between official production and user analysis workloads.  Users now have 

access to a larger pool with no change to their workflow compared to using OSG GlideinWMS. 

As seen in Figure 2, we have now run several million hours of work on pyglidein without any serious 

issues.  One of the most prominent issues has been with Parrot and OpenCL.  OpenCL interacts at a 

fairly low level with the hardware, which has been troublesome with the way Parrot works.  Through 

interaction with the Parrot team these situations have been resolved. 

 
Figure 2 Accumulated time of running glideins during 2016, binned per week.  The drop in April / 

May was a production issue, while the missing week at the end of July was a central storage failure. 

 
Figure 3 Average idle time before a job starts 

running, binned per week. 

 
Figure 4 Percent of simulation production jobs 

run on pyglidein, binned per week. 
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Almost all activity has occurred on platforms running variants of RHEL 6, with a single glidein 

tarball and a homogenous pool.  We now have access to two RHEL 7 clusters and are actively working 

on integrating them into the pool.  Besides a new glidein tarball, job matching must also be considered.  

Several future clusters will also have Ubuntu-based machines, so our approach should be flexible 

regarding platforms. 

4.  Conclusions 

Pyglidein is considered a success for IceCube, allowing easier and greater access to our global 

computing resources.  Using HTCondor flocking, we have connected this to our existing GlideinWMS 

pool, presenting a single global pool to users.  Pyglidein is running well at the current level, but we’d 

like to scale up an order of magnitude in the next few years, while keeping the effort required to operate 

it under control.  Future work will also focus on multi-platform support, Linux containers, and limiting 

sites to different groups of users. 

Acknowledgements 

We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of 

Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni 

Research Foundation, the Center for High Throughput Computing (CHTC) at the University of 

Wisconsin–Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and 

National Energy Research Scientific Computing Center; Natural Sciences and Engineering Research 

Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar 

Research Secretariat, Swedish National Infrastructure for Computing(SNIC), and Knut and Alice 

Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche 

Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research 

Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research 

(FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological 

research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, 

United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for 

Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National 

Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF). 

References 

[1] Halzen F 2003 IceCube A Kilometer-Scale Neutrino Observatory at the South Pole IAU XXV 

General Assembley, Sydney, Australia, 13-26 July 2003, ASP Conf. Series vol 13 volume 13, 

pages 13-16, July 2003 

[2] Chirkin D 2013 Photon tracking with GPUs in IceCube Nucl. Instrum. and Methods Phys. Res. 

Section A: Accelerators, Spectrometers, Detectors Associated Equipment 725 (0)141–143 

VLVvT 11, Erlangen, Germany, 12 – 14 October, 2011. 5th International Workshop on Very 

Large Volume Neutrino Telescopes, The future of high-energy neutrino astronomy 

[3] Aartsen M G et al 2015 The IceProd framework: Distributed data processing for the IceCube 

neutrino observatory J. Parallel Distrib. Comput. 75 198–211 

[4] Sfiligoi I 2008 J. Phys.: Conf. Ser. 119 062044 

[5] Pordes R et al 2007 J. Phys.: Conf. Ser. 78 012057 

[6] Thain D, Tannenbaum T and Livny M 2005 Distributed computing in practice: the Condor 

experience Concurrency and Computation: Practice and Experience 17 323–356 

[7] Caballero J on behalf of the ATLAS Collaboration 2012 AutoPyFactory: a scalable flexible pilot 

factory implementation J. Phys.: Conf. Ser 396 032016 

[8] Taylor R P et al 2015 The evolution of cloud computing in ATLAS J. Phys.: Conf. Ser 664 

022038 

[9] Aiftimiei C et al 2008 Job submission and management through web services: the experience 

with the CREAM service J. Phys.: Conf. Ser 119 062004 



6

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 092018  doi :10.1088/1742-6596/898/9/092018

 

 

 

 

 

 

[10] JSON-RPC 2.0 specification, http://www.jsonrpc.org/specification 

[11] Tannenbaum T 2010 What's new in condor? what’s coming up? Condor Week 2010 (Madison, 

WI: University of Wisconsin) http://research.cs.wisc.edu/htcondor/CondorWeek2010/condor-

presentations/tannenba_roadmap_2010.pdf 

[12] Thain G 2012 Dynamic Slot Tutorial Condor Week 2012 (Madison, WI: University of Wisconsin) 

http://research.cs.wisc.edu/htcondor/CondorWeek2012/presentations/thain-dynamic-

slots.pdf 

[13] Knoeller J 2014 Managing GPUs in HTCondor 8.1/8.2 HTCondor Week 2014 (Madison, WI: 

University of Wisconsin) 

http://research.cs.wisc.edu/htcondor/HTCondorWeek2014/presentations/KnoellerJ-GPU.pdf 

[14] Blomer J, Buncic P and Fuhrmann T 2011 Proc. of the 1st int. workshop on Network-aware data 

management (NDM'11) 49–56 

[15] Thain D and Livny M 2005 Scalable Computing: Practice Experience 6 9 

 


