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Abstract. In this work we show the feasibility of tuning the domain wall nucleation by
changing the geometry of nanomagnets using shadowing effects. Therefore, micromagnetic
simulations based on a three-dimensional model of the nanomagnetic structures have been
performed. Atomic force microscopy and anisotropy measurements on fabricated Co/Pt-
nanomagnets are used to calibrate the model. It is shown that an increasing gradient due to
shadowing effects decreases the switching field of the nanomagnets. By varying the nanomagnet
geometry, the switching field can be further decreased and the spot of nucleation can be
controlled making these technique feasible for the use in nanomagnetic logic circuitry.
Index terms— Nanomagnetic Logic, Domain wall nucleation, Micromagnetic simulation,
Shadowing effects, Artificial nucleation center

1. Introduction
Perpendicular Nanomagnetic Logic (pNML) is a promising beyond-CMOS emerging technology
exploiting three-dimensional magnetic field coupling between nanostructured Co/Pt-multilayers
[1, 2]. The switching process is based on domain wall (DW) nucleation in the weakest spot
followed by DW propagation through the entire magnet [3]. The switching energy is provided
by an alternating perpendicular magnetic clocking field [4]. Controlled DW nucleation is ensured
by creating an artificial nucleation center (ANC) with local focused ion beam (FIB) irradiation
[3, 5], which however causes large fabrication variations, requires an additional process step and
is difficult to implement on wafer processes [6, 7]. Kimling shows in [8] the local reduction of the
perpendicular magnetic anisotropy (PMA) due to shadowing effects during sputter deposition
of the multilayers, generating an anisotropy gradient at the edges of the magnetic structures.
Hence, the nucleation field can be tuned by changing the geometry of the magnetic wire ends
[8, 9]. The origin of the effects occurring due to the shadowing process is determined by a
simulation model in [8]. We improve this model by including the gradient, measured by atomic
foce microscopy (AFM), to all sides of the nanomagnets, as naturally observed during fabrication.
Multilayer films with scaled thicknesses are measured to obtain the scaling of the anisotropy at
the gradient. A three-dimensional model of the nanomagnets is designed using the experimental
data. Simulations including different gradients and geometries of the nanomagnets are performed
using OOMMF [10] to obtain the switching field and the spot of domain wall nucleation.
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Figure 1. Illustration of the shadowing process
and the gradient measured by AFM.
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Figure 2. Effective anisotropy of scaled
Co/Pt-multilayers.

2. Experimental measurements of the Co/Pt-multilayers
Co/Pt-multilayers and magnetic structures have been fabricated and characterized to feed the
micromagnetic model with realistic geometry and magnetic properties resulting from shadowing
effects. The different magnetic characteristics of this geometry need to be considered in the
switching behavior of the nanomagnets. In Fig. 1 the cross-sectional view of the shadowing
effect illustrates the lowered height of the individual layers at the edges due to the lift-off process
[8]. To measure the magnetic anisotropy of the changed geometry a series of Co/Pt-multilayer
stacks with a composition of Si/(SiO2)/Ta3nm/Ptx·5.0nm/4×[Cox·0.5nm+Ptx·2.0nm]/Pt1nm has
been fabricated under variation of the scaling factor 0 < x < 1. Realistic dimensions of process-
related lift-off edges of fabricated nanomagnets are investigated by AFM as highlighted in Fig.
1. Anisotropy measurements based on extraordinary Hall voltage measurement [11] show a
significantly lowered anisotropy for samples with an individual cobalt layer thickness tCo below
0.4 nm, as depicted in Fig. 2. The decreasing anisotropy for thinner layers origins from a lower
density of the magnetic material. Since the layer thickness is in the range of the diameter of a
single Co atom, the deposited magnetic material generates atomic islands instead of complete
layers [12]. The anisotropy drop above tCo = 0.4 nm has its nature in the volume contribution
of the effective anisotropy dominating in thicker layers [12].

3. Micromagnetic Modeling and Simulation
We investigate the DW nucleation behavior of tip nanomagnets with a tip opening angle Θ of
20◦ to 150◦, shown in Fig. 3a. As fabrication results of tip nanomagnets showed an uncontrolled
rounding of the tip, it is more beneficial to investigate nanomagnets with flat ends, as shown
in Fig. 3b. Hereby, the width w is varied between 10 nm and 100 nm at constant length. We
perform non-thermal simulations using OOMMF [10] to extract the induced shadowing effects.
Magnetic field pulses of 10 ns length and a rise time of 2 ns are applied. In our 3D-model, a
gradient is added to all sides of the nanomagnets, as observed by AFM measurements, which is
depicted in Fig. 4. The net saturation magnetization is kept constant atMS,net = 7.23×105A/m
for each cell. The effective anisotropy is scaled according to Fig. 2. Fig. 5 shows the simulation
results for the nucleation field Bnuc of the magnets in dependency of Θ. The nucleation field is
strongly decreasing for increasing gradients g, as the anisotropy energy slope from the edge to
the center of the magnet is reduced. At a constant gradient, Bnuc decreases for lower angles,
passes a minimum and increases slightly for low angles. For small tip opening angles the amount
of magnetic material with in-plane easy axis increases, thus the anisotropy step increases and
DW nucleation requires more energy. The DW nucleates for all angles at the desired ANC.
A similar behavior is obtained for the simulated nanomagnets with flat tips. For decreasing
widths the nucleation field is lowered. The geometries of the flat magnets with DW nucleation
at undesired spots are marked by the shaded region in Fig. 5b. For geometries in the unshaded
region, we observe a DW nucleation at the desired ANC, like shown in the inset of Fig. 5b. Thus,



3

1234567890

8th Joint European Magnetic Symposia (JEMS2016) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 903 (2017) 012052  doi :10.1088/1742-6596/903/1/012052

Angle Θ

Width w

10
0
n
m

10
0
n
m

10
0
n
m

100 nm 200 nm

(a) (b)

Figure 3. Top view of simulated magnets:
(a) Tip magnets, (b) Flat end magnets.

Figure 4. Model of a flat end magnet
(gradient g = 40nm, width w = 90nm).

Figure 5. DW nucleation field of (a) tip magnets and (b) flat end magnets. The shaded area
marks the geometries undesired DW nucleation occurs.

for application in pNML circuitry nanomagnets geometry and gradient need to be controlled to
ensure signal flow directionality.

4. Conclusion
In this work, a study on the DW nucleation of geometry-tuned nanomagnets has been performed
using 3D simulations based on fabrication results. It is shown, that including a gradient at a tip
using shadowing effects lowers the anisotropy and creates an ANC working as required in pNML
devices. This shows the potential of substituting the ANC creation by the use of shadowing
during the sputtering process, instead of an additional FIB irradiation step.

Acknowledgments
The authors thank M. Becherer (TUM) and G. Csaba (ND) for their fruitful support.

References

[1] Nikonov D E and Young I A 2015 IEEE J. Explor. Solid-State Computat. Devices Circuits 1 3-11
[2] Becherer M et al. EUROSOI-ULIS, 2015 121-124
[3] Breitkreutz S et al. 2012 J. Appl. Phys. 111 07A715
[4] Becherer M et al. 2013 Proceedings of the ESSDERC 276-279
[5] Breitkreutz S et al. 2011 Proceedings of the ESSDERC 323-326
[6] Eichwald I et al. 2012 IEEE Transactions on Magnetics 11 4332-4335
[7] Engelen J B C et al. 2009 Nanotechnology 21 035703
[8] Kimling J et al. 2013 J. Appl. Phys. 113 163902
[9] Mansell R et al. 2015 Appl. Phys. Lett. 107 092405
[10] The Object Oriented MicroMagnetic Framework (OOMMF) http://math.nist.giv/oommf
[11] Moon K W et al. 2009 Review of Scientific Instruments 80 113904
[12] Johnson M T et al. 1996 Reports on Progress in Physics 59 1409


