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Abstract. Realistic modeling of the complicated phenomena as Forbush decrease of the
galactic cosmic ray intensity is a quite challenging task. One aspect is a numerical solution
of the Fokker-Planck equation in five-dimensional space (three spatial variables, the time
and particles energy). The second difficulty arises from a lack of detailed knowledge about
the spatial and time profiles of the parameters responsible for the creation of the Forbush
decrease. Among these parameters, the central role plays a diffusion coefficient. Assessment
of the correctness of the proposed model can be done only by comparison of the model
output with the experimental observations of the galactic cosmic ray intensity. We apply the
Approximate Bayesian Computation (ABC) methodology to match the Forbush decrease model
to experimental data. The ABC method is becoming increasing exploited for dynamic complex
problems in which the likelihood function is costly to compute. The main idea of all ABC
methods is to accept samples as an approximate posterior draw if its associated modeled data
are close enough to the observed one. In this paper, we present application of the Sequential
Monte Carlo Approximate Bayesian Computation algorithm scanning the space of the diffusion
coefficient parameters. The proposed algorithm is adopted to create the model of the Forbush
decrease observed by the neutron monitors at the Earth in March 2002. The model of the
Forbush decrease is based on the stochastic approach to the solution of the Fokker-Planck
equation.

1. Introduction and background information
The Forbush decrease (Fd) of galactic cosmic ray (GCR) intensity are identified as a short
period decrease (5-12 days) in the stream of the GCR particles reaching the Earth [1]. The Fds
occur as an outcome the substantial disturbances in the interplanetary space occurring due to
the powerful coronal mass ejecta and solar flares on the Sun. It was shown [2, 3, 4, 5] that Fd
of GCR intensity observed by super neutron monitors can provide beneficial information about
the structure of the interplanetary magnetic field (IMF) turbulence. In connection with this,
the theoretical modeling plays an important role to explain the information obtained from Fds
observed by neutron monitors. In general modeling of the GCR transport in the heliosphere is a
quite challenging task due to complicated interaction of four main processes: convection by the
solar wind, diffusion on irregularities of interplanetary magnetic field (IMF), particle drifts in
the non-uniform magnetic field and adiabatic cooling (e.g. [6]). The interplay of these processes
represents the Parker transport equation (PTE) [7] being the second order parabolic type partial
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differential equation.
To compose the complete model of the Fd is complex problem relating with the complex

structure of the disturbed vicinity of the interplanetary space responsible for the Fd of the GCR
intensity. To take into account the simultaneous changes of the solar wind velocity, structure
of the heliospheric neutral sheet (HNS), regular and turbulence components of the IMF in the
restricted disturbed vicinity of the interplanetary space is, basically impossible.

In papers [2, 3, 4, 5] was shown that during the Fd is observed the increase of the exponent
ν of the power spectral density (PSD) of the components of the IMF (PSD ∝ f−ν , where f
is the frequency). From the other side according to the quasi-linear theory [8, 9] the diffusion
coefficient K is proportional to the rigidity R of the GCR particles as,K ∝ Rγ , where γ = 2−ν.
Thus, during Fd we observe a decrease of the diffusion coefficient due to the increase if the IMF
turbulence. However, direct insertion of the exponent ν calculated based on the experimental
IMF data is not possible. One reason is that in the model we should consider the spatial
distribution of the exponent ν while the IMF data cover only one point of space where the
spacecraft recording the IMF is placed. The second is that we observe the increase of ν mainly
for the IMF components perpendicular to the field line i.e By and Bz, while in the model we
should include the overall ν. The third problem is that we cannot calculate the value of ν with
arbitrary resolution. The reason is the requirement of employing relatively long data series to
attain the values of the exponent ν in low-frequency range f ∈< 10−6, 10−5 > responsible for
the scattering of the GCR particles to which neutron monitor and ground meson telescopes
respond. This usually was done (e.g. [2, 3]) based on the comparison of the single data series
with length predetermined by the duration of the Fd; i.e. there were calculated the PSDs for
three periods, before, during and after the Fd.

In this paper we employ the Approximate Bayesian Computation (ABC) method to compose
the model of the Fd best fitted to the Fd recorded by the neutron monitors in the period of
18 March-2 April 2002. (Fig. 1). We assume that Fd occurs due to decrease of the diffusion
coefficient K in the vicinity of space where the Fd is observed. The parameter γ responsible for
the K decrease will be fitted by the ABC method.

2. Model of the Forbush decrease
We model the transport of GCR in the heliosphere by the stochastic approach. In this approach
the individual particle motion is described as a Markov stochastic process, and the system evolves
probabilistically. Consequently the Parker equation is brought into a form of the backward
Fokker-Planck equation of the form:
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where f = f(~r,R, t) is an omnidirectional distribution function of three spatial coordinates ~r = r(r, θ, ϕ),

particles rigidity R and time t; The coefficients A1, ..., A10 are dependent on the solar wind velocity ~U ,
the drift velocity components ~vd , and the 3D anisotropic diffusion tensor Kij of GCR particles [11].
Based on the Ito formulation the corresponding set of the stochastic differential equations (SDE) is solved
(e.g., [12]). In the case of the GCR transport the set of SDEs in three dimensional heliocentric spherical
space have a form

dr = A7 · dt+ [B · dW ]r

dθ = A8 · dt+ [B · dW ]θ (2)

dϕ = A9 · dt+ [B · dW ]ϕ

dR = A10 · dt,

where ~r is the trajectory of individual pseudoparticle in the phase space and dWi is the Wiener process.
All coefficients and the details of the numerical solution of the set Eq. 2 are given in [13, 14, 15].
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In the proposed model we assume that Fd takes place due to established corotating heliolongitudinal
disturbances in the interplanetary space. In this region the IMF turbulence is increased resulting in a
gradual diminishing of the diffusion at the Earth orbit, causing larger scattering of the GCR particles,
and in effect, fewer GCR particles reach the Earth (e.g., [3, 5]). We simulate this process by the
gradual decrease and then the increase of the diffusion coefficient at the Earth orbit with respect the
heliolongitudes. The diffusion coefficient KII of cosmic ray particles has a form:

KII = K0 ·K(r) ·K(R, γ)

K(r) = 1 + 0.5 · (r/1AU)

K(R, γ) = Rγ

γ = { α+ βsin(ϕ− ζ); for(r < 30AU)and(90◦ ≤ ϕ ≤ 270◦),
α; otherwise

(3)

The parameters α, β and ζ values are selected by the ABC method so that the Fd model matches the
observational amplitude of Fd in March 2002 (see Fig. 1).

3. Approximate Bayesian Computation algorithm setup
Let λ be a parameter vector, given the prior distribution π(λ). The goal of Bayesian inference is to
approximate the posterior distribution, π(λ|dobs) ∝ π(dobs|λ)π(λ), where π(dobs|λ) is the likelihood of λ
given the observed data dobs. The main idea of ABC methods is to accept λ as an approximate posterior
draw if its associate (modeled) data d is close enough to the observed data dobs. Accepted parameters
are a sample from π(λ|ρ(d, dobs) < ε) where the ρ(d, dobs) is the chosen measure of discrepancy, and ε is
a threshold defining ’closeness margin’. If ε is sufficiently small then the distribution π(λ|ρ(d, dobs) < ε)
will be a good approximation for the posterior distribution π(λ|dobs). It is often difficult to define an
adequate distance function ρ(d, dobs) between the simulated and observed data. So, in many cases it is
replaced with a distance defined by summary statistics, ρ(S(d), S(dobs)). However, as here we consider
the Fd amplitudes in specific time points, we can compare those data directly without a use of summary
statistics.

In ABC methods, Sequential Monte Carlo (SMC) is used to automatically, sequentially ’clean’
approximation of posterior distribution to be used to generate proposals for further steps. In ABC SMC
method, the set of samples with weights, called particles sampled from the prior distribution π(λ1), are
propagated through a sequence of intermediate posterior distributions π(λt|ρ(d, dobs) < εt), t = 1, ..., T ,
until it represents a sample from the target distribution, π(λT |ρ(d, dobs) < εT ). These methods aim
to generate draws from p(λt|ρ(d, dobs) < εt), at each of a series of sequential steps t, where εt define a
series of thresholds. In [16] the authors proposed strategies called ABC SMC with Adaptive Weights
(ABC SMC AW). In the first step algorithm 1 initializes the threshold schedule ε1 > ε2 >, ..., > εT .
Then N samples are simulated based on the predefined a priori distribution π(λ1) and the corresponding
acceptance condition ρ(d, dobs) < ε1. Next, the initial uniform weights are calculated. Samples, denoted
by a tilde are drawn from the previous generation with probabilities wt−1j . Using perturbation kernel

Kλ,t(λ
t
i|λ̃i) new ’fresh’ samples λti are obtained, with the veracity of the condition ρ(d, dobs) < εt. The

weights are calculated according to the formula in stage (11); in stage (12) the weights are normalized
and the time step is increased t = t+ 1. This procedure is repeated until t ≤ T .

In this paper the scanned parameters vector λ is

λ ≡ (α, β, ζ). (4)

with the following priori distribution on particular parameters:

π(λ1) ≡ {
α ∼ U(0.7, 1.5),
β ∼ U(0.1, 0.5)
ζ ∼ U(70, 100)

To estimate the fit of the Fd model to the observations as a distance measure we used normalized
approximation error between all the data. This measure is called Fractional Bias (FB) is used to indicate
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Algorithm 1 ABC SMC AW

1. Initialize threshold schedule ε1 > ε2 >, ..., > εT
2. Set t = 1
for i = 1 to N do

3. Simulate λti ∼ π(λt) and d ∼ π(d|λti)
4. Until ρ(d, dobs) < εt
5. Set wti = 1

N
end for
for t = 2 to T do

for i = 1 to N do
8. Pick λ̃i from the set {λt−1j }1≤j≤N

with probabilities {vt−1j }1≤j≤N
9. Draw λti ∼ Kλ,t(λ

t
i|λ̃i) and d ∼ π(d|λti)

10. Until ρ(d, dobs) < εt
11. Compute new weights as

wti ∝
π(λti)∑

j v
t−1
j Kλ,t(λ

t
i|λ

(t−1)
j )

12. Normalize weights wti for i = 1, ..., N
end for

end for

a bias towards underprediction or overprediction of data by the model. We have slightly modified the
classical FB measure ρ(d, dobs) as:

ρ(d, dobs) =
1

days

days∑
i=1

|di − d̂i|
|di + d̂i|

, (5)

under additional definition, that |di−d̂i|
|di+d̂i|

= 0 when di = 0 and d̂i = 0.

The most commonly used adaptive scheme for threshold choice is based on the quantile of the empirical
distribution of the distances between the simulated data and observations (e.g. [18]). This method
determines εt in the t time-iteration by sorting the measure {ρ(dt−1θi , dobs)}1<i≤N and setting εt such that
predetermined percent αt of the simulated data fulfill the condition ρ(d, dobs) < εt. The basic problem
with this approach is that we are not able to estimate the value of the measure ρ(d, dobs) based on the
values obtained in iteration t− 1. In this paper, we propose an efficient adaptive mechanism for setting
the αt. The value of the quantile is judged based on of the previous stage t − 1, but with three major
improvements:

• The distribution of {ρt−1θi }i=1,...,N measure of samples set is not discrete. To keep the procedure
flexible and support the interval [0, 1] the best choice for continuous distributions seems to be the
family of Beta distributions.

• The set {ρt−1θi }i=1,...,N is extended by adding the values of ρ(d, dobs) calculated in step t regardless
whether the samples have been accepted or not.

• We propose to define the value of αt to be dependent on the ratio between a number of
currently accepted samples (AS) and the number of all hitherto generated samples (AGS) i.e.:
αt = 1−AS/AGS.

We chose transition kernel Kλ,t(λ
t
i|λ̃i) to be a three dimensional Gaussian kernel (e.g. [17]). The set of

samples from t − 1 is used to construct a kernel Kλ,t(λ
t
i|λ̃i), which will describe the probability mass.

Additionally only samples keeping the parameter γ in a physically acceptable interval i.e., 0 < γ < 2 are
accepted.
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Figure 1. The trace plots for all searched parameters λ ≡ (α, β, ζ) in subsequent iterations. Red line
marks the mean value within 300 iterations; gray color represents simple trace plot of all samples. The
bottom panel presents the FB value for all the accepted samples shown in top three panels.

4. The simulations results and discussion
We have employed the ABC SMC with Adaptive Weights method described in section 3 to find the
diffusion coefficient parameters λ ≡ (α, β, ζ) matching the Fd observed in March 2002 (Fig. 3). The
code for the numerical realization of the described algorithm is realized in Julia environment [19]. The
model of GCR stochastic transport in the heliosphere described in section 2 is easy to parallelize versus
the number of simulated pseudoparticles using Distributed Arrays Package. This approach fallouts
from the assumption that any random process is independent of the other realization, accordingly each
pseudoparticles trajectory is independent on another. We performed the simulations applying the ABC
SMC AW method setup described in section 3. Each calculation of the FB (Eq. 5) value requires one
run of the model of stochastic transport of GCR in the heliosphere represented by the SDEs (Eq. 2). In
a single run, the trajectories of N = 3000 pseudoparticles were traced backward in time in the spherical
heliocentric coordinate system. The pseudoparticles with the rigidity R=10 GV were initialized in the
point representing the Earth’s orbit and traced backward in time until crossing the heliosphere boundary
assumed at 100 AU. Details of the numerical solution of Eqs.2 are given in [13].

Fig. 1 illustrates the trace plots for all searched parameters in subsequent stages of the algorithm. The
red line marks the mean value within 300 iterations. One can see, that with iterations the samples are
more focused on the average value. This is the best visible in the case of β and ζ parameters. These
parameters influence the most the amplitude of Fd. From the other side, we can see that the estimation
of the parameter λ is not so unequivocal. The variance of this parameter is the largest. The bottom
panel in Fig.1 presents the values of FB for accepted samples throughout the scanning procedure. One
can see, that the FB value changes significantly in subsequent stages. In the initial iterations of given
time, we observe the meaningful change of FB value. This is connected with adapting the threshold to
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Figure 2. The bivariate and marginal posterior distributions for all searched parameters λ ≡ (α, β, ζ).
Probability density colors the plot, the more red regions, the higher is its probability. The red vertical
lines in diagonal plots mark the value of the parameter with the higher probability. The green horizontal
line cuts the value 50% of maximal probability.

the knowledge about the Fd amplitude, i.e., the value εt is modified according to the Acceptance Ratio
(AR) . Starting from 1500 iteration, no significant improvement in FB value is observed. In result, ABC
SMC AW algorithm accepts only samples with FB value lower than one estimated in previous stages.
This reveals the strength of the proposed procedure, which keeps the Acceptance Ratio at the appropriate
level in all stages.
The summarized results of reconstruction procedure are presented in Fig.2 as a trellis plot. Recall
that a color pattern reflected in the Fig.2 corresponds to the empirical 2D probability distribution of all
parameter combinations. The colored contour lines are enveloping higher probability of the joint posterior
distributions. The diagonal plots are marginal empirical posterior distributions of the parameters (α, β, ζ).

The estimated as most probable values of parameters are highlighted with a vertical red line in diagonal
subplots. The most probable values are: P (α = 1.11±0.01) = 0.0404, P (β = 0.1845±0.00635) = 0.2577,
P (ζ = 80.4545 ± 0.45455) = 0.0880. The green horizontal line cuts the half of the maximal probability
distribution for each parameter, which we consider as a high probability region. Thus, as the values
with high probability for each considered parameter we consider the interval α ∈< 0.87, 1.35 >,
β ∈< 0.1718, 0.1973 > and ζ ∈< 76.8182, 84.0909 >.

We have incorporated the estimated parameters of diffusion coefficient into the stochastic model of
the Fd. The expected amplitudes of the GCR intensity for the rigidity of 10 GV in comparison with the
profile of the daily GCR intensity recorded by Apatity and Moscow neutron monitor during 18 March
- 2 April presents Fig. 3. The shaded region denotes the amplitudes of the Fd obtained for the border
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Figure 3. Temporal changes of the observed daily amplitudes of Fd in 18-March - 2 April 2002 for
Apatity and Moscow neutron monitors and expected amplitude modeled with use of the parameters vector
λ denoted by ABC SMC AW algorithm as the most probable. The shady region marks the expected
amplitude for the minimal/maximal parameters indicated by ABC SMC AW with at least 50% of the
maximal probability.

values of the high probability region of parameters. One can see that proposed model reconstructs the
temporal changes of the GCR intensity observed in March 2002. However, in some periods, the model
results do not coincide one to one with the experiment. The reasons are the assumed simplifications.
The discrepancy results from the assumption that the Fd is modeled only by the change in diffusion
coefficient, while the solar wind velocity was assumed as constant. However, one can see that proposed
ABC SMC AW method in conjunction with the stochastic model of GCR transport was able to confirm
that as the main cause of the Fd observed in March 2002 we can consider the decrease of the exponent γ
causing the change of the diffusion coefficient. These results coincide with the experimental data for Fd
in March 2002 presented in [2].
The obtained results confirm that the ABC methodology can be successfully applied to judge about the
spatial and temporal changes of the parameters responsible for GCR modulation in the heliosphere. The
future work will include testing other FB measures and summary statistics. The energy dependence of
the diffusion coefficient and the spatial dependence of the drift velocity will also be fitted.
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