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Abstract.
The knowledge of the level density is necessary for understanding nuclear reactions and many

applications of nuclear science.We use the moments method based on the statistical properties
of mesoscopic systems (interactions between the constituents and resulting quantum chaos) and
the many-body Hamiltonian in a truncated orbital space avoiding the diagonalization of huge
matrices. We briefly discuss the method, general results in comparison with other approaches
and available data, the underlying physics, collective enhancement phenomenon, and constant
temperature description.

1. Introduction
It is not necessary to explain the importance of reliable knowledge of the level density for
any mesoscopic system of interacting constituents. In nuclei, the level density is a regular
part of treating various nuclear reactions, including technological and medical applications and
nucleosynthesis in cosmos. In fact, the concept of the level density appeared historically as the
first application of statistical ideas in nuclear theory [1, 2, 3].

The nucleus is a self-supporting conglomerate of strongly interacting nucleons. The starting
point is the mean field created by averaging the action of individual particles. In the rough
approximation, the particles independently occupy various orbitals in this field when the only
limitation comes from Fermi-statistics. The excited states (particles and holes) are generated by
combining individual promotions of nucleons to higher orbitals. The higher is the excitation the
larger the number of possible ways to reach approximately the same total energy, and the level
density grows exponentially. This combinatorics was first exploited by Bethe [4] who presented
the estimate of the Fermi-gas level density. For a Fermi gas in a spherical box, the level density
is a smooth function of excitation energy; its growth can be described by increasing temperature
uniquely related to the energy. For a more realistic mean field with the shell structure of single-
particle orbitals, the level density is modulated by the density of those orbitals. In a spherical
field, the orbitals carry angular momentum quantum numbers and it is important to know the
level density for specific classes of many-body states (total spin, isospin, parity). The idea of
Bethe was to assume the random coupling of individual angular momenta which results in the

http://creativecommons.org/licenses/by/3.0
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Gaussian distribution of the total spin projection with the width determined by the effective
moment of inertia (the so-called spin cut-off parameter).

The next stage of the development is well documented in the review article [5]. The Fermi-gas
model now is enriched by the real shell-model structure and pairing effects which significantly
change the level density at least at not very high energy. The changes (like “back-shifted Fermi-
gas formula” [6]) are phenomenological and contain empirical parameters for each nucleus. Later
the pairing correlations were included on a microscopic level through the analog of the BCS or
Hartree-Fock-Bogoliubov theory so that the mean field becomes self-consistent and the system
superfluid [7, 8]. The level density predicted in this way typically has a smooth background and
significant bumps related to the subshell structure.

If we would have a reliable description of interactions inside a nucleus, we would solve the
quantum many-body problem and find the theoretical level density. The shell model with
effective interactions is just an appropriate instrument. Unfortunately, the orbital states have to
be truncated, otherwise the computational problem becomes not tractable. The shell model
Monte Carlo approach [9] does not require huge diagonalization and was repeatedly used
for finding the level density. It handles however only a limited set of possible interparticle
interactions. The modern versions of the shell model (configuration interaction) cover a broad
interval of excitation energy and the complete set of possible interaction matrix elements. The
real problem is to be able to extract the level density avoiding full diagonalization.

2. Quantum chaos and moments method
With excitation energy growing and diminishing level spacings, the stationary wave functions
become extremely complicated superpositions of the mean field states (particles and holes).
Assuming the interaction being gradually turned on, the wave functions with the fixed global
quantum numbers go through the process of multiple avoided crossings. Very fast (even with
interaction still weaker than its realistic strength) the states reach the high degree of complexity.
The energies inside the given class of states form an “aperiodic crystal” with the weakly
fluctuating distances. This is the stage close to the mathematical limit of quantum chaos [10, 11].
There are broad studies of realistic examples which show [13, 14, 15] that indeed the system is
locally close to the mathematical limit of the Gaussian Orthogonal Ensemble (GOE).

For our applications we do not need the exact fulfillment of the GOE properties. It is sufficient
to satisfy the informal physical description given long ago [10]: in a vicinity of given energy the
neighboring states have very similar physical properties (“look the same”) and matrix elements
of “simple” physical operators of the same order of magnitude. Then we expect that it is possible
to apply the methods of statistical spectroscopy [16, 17].

As possible to check in exactly solvable shell-model versions, the level density in each class is
a smooth bell-shaped curve with the maximum in the middle. Because we work in a truncated
space, the significant part of this curve characterizes just the applied model rather than realistic
physics as at some energy the missing states outside our orbital space should enter. Luckily
enough, in practice the initial part of the curve provides a good description of reality up to some
excitation energy. In this “realistic region” the complexity of physics allows to find the level
density by calculating just the first statistical moments of the distribution.

Starting with the spherical mean field we divide all basis states in partitions p where the given
particle number is distributed in same way over available orbitals. Let Dαp be the dimension of
the class of states with exact quantum numbers α inside the partition p. For each partition we
calculate the lowest moments (traces) of the Hamiltonian. The first moment is just a centroid,

M (1)
αp =

1

Dαp
TrαpH ≡ Hαp. (1)
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The second moment is the mean square fluctuation,

M (2)
αp =

1

Dαp
TrαpH

2 − [Hαp]
2 ≡ σ2

αp. (2)

The first moment accounts for the mean field energy of the partition and the diagonal matrix
elements of the interaction Hamiltonian. The second moment is the mean sum of the off-diagonal
matrix elements including the interactions between different partitions. Both moments can be
actually read just from the Hamiltonian matrix without any diagonalization procedure.

It was shown long ago [13] that the level density of a partition very fast converges to the
Gaussian distribution. Therefore the resulting level density for a given set α of quantum numbers
is given by a sum over partitions of the Gaussians Gη(x−x0;σ), defined by the eqs. (1) and (2),

ρα(E) =
∑

p

Gη(E − (Hαp − Eg.s.);σαp). (3)

Although the procedures are developed for including the higher moments of the Hamiltonian, in
practice this is not necessary. The third moment would cut the unphysical tails of the Gaussians.
Instead we introduce [18] the parameter η that effectively does the same so that G(x− x0, σ) is
set to zero at |x− x0| < ησ. This is the only parameter that is not determined directly by the
Hamiltonian; the shell-model study of the strength functions suggests η ≈ 2.4−2.8. The ground
state energy Eg.s. should be determined separately either by the calculation (for example, with
the Lanczos algorithm) or by application of the exponential convergence method [19]. Figure 1
demonstrates the good agreement of the level density calculated by the two moments procedure
with the exact sd-shell solution for 28Si. The fourth moment would improve the result around
the center of the curve which is anyway outside the physical region of the sd-model.

The moments method was recently used for the nuclei of sd and pf shells, where the reliable
two-body interaction Hamiltonians do exist. The discussion of many features of the method and
relevant references can be found in [20]; the details of the computational algorithm are given
in [21]. For all nuclei studied, the level density in all classes of states is a smooth function
with the subshell bumps significantly levelled out. As shown in [20], this is the result of the
presence of many incoherent collision-like interactions which are absent in the mean-field, BCS
or shell-model Monte Carlo approaches and which in fact form the realistic level density.

3. New development
Having at our disposal a realistic model of the many-body level density we can not only count
on the better description of nuclear reactions. It becomes possible to turn to some questions of
deep meaning. The first desire is to find an analytic approximation that would agree with the
exact level density and reduce the theoretical task to predicting the parameters. The analysis of
the back-shifted Fermi-gas approach has shown [20] the long expected Rosenzweig effect [5] of
the systematic change of the Fermi-gas temperature along the shell filling. Another observation
was that the angular momentum coupling described by the random process does not work in
the cases similar to 44Ca. Here the shell model operates with only four protons, and therefore
T = 2 states and only the T = 1 component of the two-body forces. This is not sufficient for
the randomness of angular momentum coupling.

Currently the best description seems to be given [22] by a constant temperature model: the
level density at not very high excitation energy E is well described as

ρ(E) =
1

T
e(E−E0)/T . (4)
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Figure 1. The level density of 28Si in the sd orbital space calculated with the moments method
(smooth dashed curve) and by exact diagonalization (solid line with small wiggles).

Here T is a fixed parameter that plays the role of the effective temperature of the ground and
low-lying states. Fig. 2 demonstrates the high quality of the fit for the level density by this
model for various nuclei. The idea of the ground state temperature is not new. It was long ago
suggested by Moretto [23] as a sign of the phase transition from paired to normal Fermi liquid.
However, the shell-model studies [24] invariably show a slow fall of the pairing correlators as a
function of energy in various classes of states instead of sharp phase transitions. The ground
state temperature was also discussed [25] as the fluctuational part of the mean field obtained
by averaging over chaotic interactions. This interpretation is in qualitative agreement with the
systematics of the parameter T , Fig. 3. All isotopes reveal the odd-even staggering and clear
minima for N = Z and nearby isotopes. Here pairing and possibly quarteting correlations lead
to more “deeply frozen” low-energy configurations. It is also useful to study the changes of
the level density varying the interaction. In this way one can see [26] the special role of the
interactions mixing single-particle orbitals and inducing the shape deformation along with the
related collective enhancement of low-energy level density.

All these properties, as well as dependence on various components of the interaction and
on nuclear spin, should be studied in more detail. The consideration has to be generalized to
different orbital spaces. For the mixture of shells of different parity one needs to get rid of he
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spurious states related to the center-of-mass excitation; there is a well established procedure
that excludes such admixtures [27]. In the conclusion we nave to mention that the values of the
parameter T for all nuclei in the sd shell and for all spin classes are tabulated and can be used
by experimentalists [28].
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Figure 2. The level density calculated in the moments method and its description in the
constant temperature model, eq. (4).
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Figure 3. The constant temperature parameter for various nuclei in the sd shell.
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