Application and performance of an ML-EM algorithm in NEXT

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and

Published 16 August 2017 © 2017 IOP Publishing Ltd and Sissa Medialab
, , Citation A. Simón et al 2017 JINST 12 P08009 DOI 10.1088/1748-0221/12/08/P08009

1748-0221/12/08/P08009

Abstract

The goal of the NEXT experiment is the observation of neutrinoless double beta decay in 136Xe using a gaseous xenon TPC with electroluminescent amplification and specialized photodetector arrays for calorimetry and tracking. The NEXT Collaboration is exploring a number of reconstruction algorithms to exploit the full potential of the detector. This paper describes one of them: the Maximum Likelihood Expectation Maximization (ML-EM) method, a generic iterative algorithm to find maximum-likelihood estimates of parameters that has been applied to solve many different types of complex inverse problems. In particular, we discuss a bi-dimensional version of the method in which the photosensor signals integrated over time are used to reconstruct a transverse projection of the event. First results show that, when applied to detector simulation data, the algorithm achieves nearly optimal energy resolution (better than 0.5% FWHM at the Q value of 136Xe) for events distributed over the full active volume of the TPC.

Export citation and abstract BibTeX RIS

10.1088/1748-0221/12/08/P08009