The following article is Open access

Antiproton tagging and vertex fitting in a Timepix3 detector

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and

Published 7 June 2018 , , Citation S. Aghion et al 2018 JINST 13 P06004 DOI 10.1088/1748-0221/13/06/P06004

1748-0221/13/06/P06004

Abstract

Studies of antimatter are important for understanding our universe at a fundamental level. There are still unsolved problems, such as the matter-antimatter asymmetry in the universe. The AEgIS experiment at CERN aims at measuring the gravitational fall of antihydrogen in order to determine the gravitational force on antimatter. The proposed method will make use of a position-sensitive detector to measure the annihilation point of antihydrogen. Such a detector must be able to tag the antiproton, measure its time of arrival and reconstruct its annihilation point with high precision in the vertical direction. This work explores a new method for tagging antiprotons and reconstructing their annihilation point. Antiprotons from the Antiproton Decelerator at CERN were used to obtain data on direct annihilations on the surface of a silicon pixel sensor with Timepix3 readout. These data were used to develop and verify a detector response model for annihilation of antiprotons in this detector. Using this model and the antiproton data it is shown that a tagging efficiency of 50± 10% and a vertical position resolution of 22 ± 0.5 μm can be obtained.

Export citation and abstract BibTeX RIS

© 2018 CERN for the benefit of the AEgIS collaboration. Published by IOP Publishing Ltd on behalf of Sissa Medialab. Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.