A low-cost, FPGA-based servo controller with lock-in amplifier

, , , and

Published 29 October 2012 Published under licence by IOP Publishing Ltd
, , Citation G Yang et al 2012 JINST 7 P10026 DOI 10.1088/1748-0221/7/10/P10026

1748-0221/7/10/P10026

Abstract

We describe the design and implementation of a low-cost, FPGA-based servo controller with an integrated waveform synthesizer and lock-in amplifier. This system has been designed with the specific application of laser frequency locking in mind but should be adaptable to a variety of other purposes as well. The system incorporates an onboard waveform synthesizer, a lock-in amplifier, two channels of proportional-integral (PI) servo control, and a ramp generator on a single FPGA chip. The system is based on an inexpensive, off-the-shelf FPGA evaluation board with a wide variety of available accessories, allowing the system to interface with standard laser controllers and detectors while minimizing the use of custom hardware and electronics. Gains, filter constants, and other relevant parameters are adjustable via onboard knobs and switches. These parameters and other information are displayed to the user via an integrated LCD, allowing full operation of the device without an accompanying computer. We demonstrate the performance of the system in a test setup, in which the frequency of a tunable external-cavity diode laser (ECDL) is locked to a resonant optical transmission peak of a Fabry-Perot cavity. In this setup, we achieve a total servo-loop bandwidth of ∼ 7 kHz and achieve locking of the ECDL to the cavity with a full-width-at-half-maximum (FWHM) linewidth of ∼ 200 kHz.

Export citation and abstract BibTeX RIS

10.1088/1748-0221/7/10/P10026