To investigate the aerodynamic performance of dragonfly wing corrugations under gliding conditions, a new method of corrugation deformation is proposed. Firstly, the coordinate transformation functions that describe the amplitude and camber deformation of the corrugation and numerical simulation model are established. Then the effects of the corrugation structural parameters on airfoil performance are investigated by orthogonal experiment. Subsequently, the optimal structural parameters are selected sequentially, and the mechanism of the corrugation producing a high lift-to-drag ratio is analyzed. The results show that the optimized corrugation parameters are: corrugation profile as profile 5, amplitude coefficient λ = 0.8, vertex x-coordinate a = 0.9 c, vertex y-coordinate b = 0.04 c. The optimal airfoil achieves the highest lift-to-drag ratio of 5.090, which is increased by 42.82% compared with the flat airfoil (FA). The cambered corrugation airfoil can suppress flow separation. The high-pressure area generated within pressure surface corrugation can increase the pressure difference between the upper and lower surfaces, which is the main reason for the high lift-to-drag ratio. Finally, the bionic airfoils are built by arranging the corrugation on the FFA-W3-211 airfoil, which prove that the dragonfly corrugation with a low Reynolds number is also applicable to the wind turbine airfoil with a high Reynolds number, thereby increasing the lift-to-drag ratio of the prototype airfoil by 1.22%.

Purpose-led Publishing is a coalition of three not-for-profit publishers in the field of physical sciences: AIP Publishing, the American Physical Society and IOP Publishing.
Together, as publishers that will always put purpose above profit, we have defined a set of industry standards that underpin high-quality, ethical scholarly communications.
We are proudly declaring that science is our only shareholder.
Could you publish open access in this journal at no cost?
Find out if your institution is participating in the transformative agreement with OhioLink to cover unlimited APC’s.
Find out how to take advantage

ISSN: 1748-3190
Bioinspiration & Biomimetics publishes research that discovers and uses principles from natural systems to create physical models, engineering systems and technological designs.
Lijun Zhang et al 2025 Bioinspir. Biomim. 20 036008
Wenzhan Ou et al 2025 Bioinspir. Biomim. 20 036007
The biosonar system of odontocetes enables directional sound transmission and reception. Beluga whales (Delphinapterus leucas) are notable among odontocetes as they can alter the shape of their fatty melon during sound transmission, potentially suggesting distinct acoustic capabilities. In this study, we developed a biosonar model of a beluga whale using computed tomography scanning and structural reconstruction to examine directional transmission and reception in this species. This model could modulate sounds into a directional beam using either single or dual sources. Across frequencies from 5 to 60 kHz, the directivity indices for the left and right sound sources ranged from 4.83 to 15.2 dB and 4.81–14.7 dB, respectively. When both sound sources were used simultaneously, there was an average increase of at least 2.26 dB in energy and 0.68 dB in the directivity index compared to using a single source. Additionally, beam steering was achieved in the dual-source transmission by introducing a timing difference between the two sources. The simulations indicated that sound reception was frequency-dependent, with the greatest sensitivity to lateral sounds at low frequencies and to forward sounds at high frequencies. These results suggested that both transmission and reception in beluga whales were directional and frequency-dependent.
Yichen Chu et al 2025 Bioinspir. Biomim. 20 036006
This study presents a new design for a multi-degree-of-freedom underdriven mechanism. The aim is to achieve efficient bionic motion of a sea turtle hydrofoil with multi-degrees-of-freedom using a single drive source. The design focuses on the kinematic characteristics of the hydrofoil. The design and modeling of the bionic hydrofoil are completed by accurately extracting and fitting the contours of the leading and trailing edges of the sea turtle hydrofoil. The article presents a detailed data analysis of the motion performance of the bionic hydrofoil through pool experiments combined with CCD camera shots. The experimental results reveal that the underdriven bionic hydrofoil moves at a frequency of 0.5 Hz. The correlation coefficients of the waving and rotation angles between the sea turtle hydrofoil and the bionic hydrofoil in the underwater experiments exceed 0.95. The total integral area ratio of the waving angle change curve and rotation angle change curve is more than 0.9. It is demonstrated that the new drive scheme proposed in this paper can realize a single actuator to control the motion of a sea turtle in three degrees of freedom. Breaking away from the traditional paradigm of independent multi-motor drives, the realization of 'input–output' motion mapping through mechanical design is of great significance for the complexity reduction of robot control systems.
Shubham Tiwari et al 2025 Bioinspir. Biomim. 20 036005
In the present numerical investigation we studied the effect of forewing and hindwing stroke amplitude () on the aerodynamic performance of dragonfly (or damselfly) hovering flight. Three-dimensional numerical simulation was performed for two wings with a tandem arrangement flapping along an inclined stroke plane. Simulations were conducted for identical as well as non-identical stroke amplitudes of both wings, oscillating with three phase differences:
and
. For identical stroke amplitudes, the higher stroke amplitude reduces the vertical force coefficients of both wings. For
, forewing lift is significantly enhanced for higher stroke amplitudes due to leading edge vortex interaction. For
and
, the wing–wing interaction is found to be detrimental to the vertical force coefficient of both wings. The presence of the forewing reduces hindwing lift for all
, with maximum lift reduction observed for
. The maximum hovering efficiency for identical stroke amplitudes is obtained for
when
. For non-identical stroke amplitudes, the hindwing lift reduces with an increase in forewing stroke amplitude for all
. Also, forewing lift increases with hindwing stroke amplitude when
. However, for
and
, forewing lift is reduced for higher hindwing stroke amplitudes. It was found that non-identical stroke amplitudes are detrimental to the hovering efficiency of dragonfly flight. The present study will help us optimize wing kinematics during the development of dragonfly-inspired micro air vehicles.
Martí Verdaguer Mallorquí et al 2025 Bioinspir. Biomim. 20 031001
Biomimetic research has drawn inspiration from the knowledge acquired from the diverse morphologies and specialized functions of hymenopteran ovipositors. For example, the morphology of the honeybee stinger was used to create surgical needles that reduce insertion forces, minimize tissue damage, and increase precision. Similarly, the reciprocating drilling mechanisms observed in wood-boring hymenopterans inspired the development of steerable probes for neurosurgery, offering improved control and reduced trauma during penetration. Despite these advances, the ovipositors of sawflies, which promise intricate cutting mechanisms, have remained poorly studied in biomimetics. Unlike wood-boring species, most sawflies typically cut through soft plant tissues using their saw-like ovipositors, which could inspire new designs for precise cutting and sawing devices. This review advocates the need for further research into the structure, mechanical properties and functional principles of sawfly ovipositors to fully exploit their potential in bio-inspiration. We highlight the lack of detailed mechanical studies connecting ovipositor morphology to cutting efficiency and substrate interactions. Understanding these relationships could uncover new principles for engineering applications, such as medical or industrial cutting tools.
Martí Verdaguer Mallorquí et al 2025 Bioinspir. Biomim. 20 031001
Biomimetic research has drawn inspiration from the knowledge acquired from the diverse morphologies and specialized functions of hymenopteran ovipositors. For example, the morphology of the honeybee stinger was used to create surgical needles that reduce insertion forces, minimize tissue damage, and increase precision. Similarly, the reciprocating drilling mechanisms observed in wood-boring hymenopterans inspired the development of steerable probes for neurosurgery, offering improved control and reduced trauma during penetration. Despite these advances, the ovipositors of sawflies, which promise intricate cutting mechanisms, have remained poorly studied in biomimetics. Unlike wood-boring species, most sawflies typically cut through soft plant tissues using their saw-like ovipositors, which could inspire new designs for precise cutting and sawing devices. This review advocates the need for further research into the structure, mechanical properties and functional principles of sawfly ovipositors to fully exploit their potential in bio-inspiration. We highlight the lack of detailed mechanical studies connecting ovipositor morphology to cutting efficiency and substrate interactions. Understanding these relationships could uncover new principles for engineering applications, such as medical or industrial cutting tools.
Dongfu Ma et al 2024 Bioinspir. Biomim. 19 061001
Bird-like flapping-wing aerial vehicles (BFAVs) have attracted significant attention due to their advantages in endurance, range, and load capacity. For a long time, biologists have been studying the enigma of bird flight to understand its mechanism. In contrast, aviation designers focus more on bionic flight systems. This paper presents a comprehensive review of the development of BFAV design. The study aims to provide insights into building a flyable model from the perspective of aviation designers, focusing on the methods in the process of overall design, flapping wing design and drive system design. The review examines the annual progress of flight-capable BFAVs, analyzing changes in prototype size and performance over the years. Additionally, the paper highlights various applications of these vehicles. Furthermore, it discusses the challenges encountered in BFAV design and proposes several possible directions for future research, including perfecting design methods, improving component performance, and promoting practical application. This review will provide essential guidelines and insights for designing BFAVs with higher performance.
Stuart Burgess 2024 Bioinspir. Biomim. 19 051004
This paper broadly summarizes the variation of design features found in vertebrate limbs and analyses the resultant versatility and multifunctionality in order to make recommendations for bioinspired robotics. The vertebrate limb pattern (e.g. shoulder, elbow, wrist and digits) has been proven to be very successful in many different applications in the animal kingdom. However, the actual level of optimality of the limb for each animal application is not clear because for some cases (e.g. whale flippers and bird wings), the basic skeletal layout is assumed to be highly constrained by evolutionary ancestry. This paper addresses this important and fundamental question of optimality by analysing six limbs with contrasting functions: human arm, whale flipper, bird wing, human leg, feline hindlimb and frog hindlimb. A central finding of this study is that the vertebrate limb pattern is highly versatile and optimal not just for arms and legs but also for flippers and wings. One key design feature of the vertebrate limb pattern is that of networks of segmented bones that enable smooth morphing of shapes as well as multifunctioning structures. Another key design feature is that of linkage mechanisms that fine-tune motions and mechanical advantage. A total of 52 biomechanical design features of the vertebrate limb are identified and tabulated for these applications. These tables can be a helpful reference for designers of bioinspired robotic and prosthetic limbs. The vertebrate limb has significant potential for the bioinspired design of robotic and prosthetic limbs, especially because of progress in the development of soft actuators.
Jinsheng Zhao et al 2024 Bioinspir. Biomim. 19 051003
In the early twenty-first century, extensive research has been conducted on geckos' ability to climb vertical walls with the advancement of microscopy technology. Unprecedented studies and developments have focused on the adhesion mechanism, structural design, preparation methods, and applications of bioinspired dry adhesives. Notably, strong adhesion that adheres to both the principles of contact splitting and stress uniform distribution has been discovered and proposed. The increasing popularity of flexible electronic skins, soft crawling robots, and smart assembly systems has made switchable adhesion properties essential for smart adhesives. These adhesives are designed to be programmable and switchable in response to external stimuli such as magnetic fields, thermal changes, electrical signals, light exposure as well as mechanical processes. This paper provides a comprehensive review of the development history of bioinspired dry adhesives from achieving strong adhesion to realizing switchable adhesion.
Stan R R Baeten et al 2024 Bioinspir. Biomim. 19 051002
This review explores the present knowledge of the unique properties of shark skin and possible applications of its functionalities, including drag reduction and swimming efficiency. Tooth-like denticles, with varied morphologies, sizes, and densities across the shark's body, significantly influence the flow and interaction of fluids. Examining dermal denticle morphology, this study unveils the functional properties of real shark skin, including mechanical properties such as stiffness, stress–strain characteristics, and denticle density's impact on tensile properties. The adaptive capabilities of the Mako shark scales, especially in high-speed swimming, are explored, emphasizing their passive flow-actuated dynamic micro-roughness. This research contains an overview of various studies on real shark skin, categorizing them into skin properties, morphology, and hydrodynamics. The paper extends exploration into industrial applications, detailing fabrication techniques and potential uses in vessels, aircraft, and water pipes for friction reduction. Three manufacturing approaches, bio-replicated forming, direct fabrication, and indirect manufacturing, are examined, with 3D printing and photoconfiguration technology emerging as promising alternatives. Investigations into the mechanical properties of shark skin fabrics reveal the impact of denticle size on tensile strength, stress, and strain. Beyond drag reduction, the study highlights the shark skin's role in enhancing thrust and lift during locomotion. The paper identifies future research directions, emphasizing live shark testing and developing synthetic skin with the help of 3D printing incorporating the bristling effect.
Xu et al
Invertebrate research ethics has largely been ignored compared to the consideration of higher order animals, but more recent focus has questioned this trend. Using the robotic control of Aurelia aurita as a case study, we examine ethical considerations in invertebrate work and provide recommendations for future guidelines. We also analyze these issues for prior bioethics cases, such as cyborg insects and the 'microslavery' of microbes. However, biohybrid robotic jellyfish pose further ethical questions regarding potential ecological consequences as ocean monitoring tools, including the impact of electronic waste in the ocean. After in-depth evaluations, we recommend that publishers require brief ethical statements for invertebrate research, and we delineate the need for invertebrate nociception studies to revise or validate current standards. These actions provide a stronger basis for the ethical study of invertebrates, with implications for individual, species-wide, and ecological impacts, as well as for studies in science, engineering, and philosophy.
Yu et al
This study presents a flexible aquatic swimming robot, which is a promising candidate for underwater search and detection missions. The robot is a living eel fitted with a wireless electronic backpack stimulator attached to its dorsal region. Leveraging the eel's inherent self-balancing and self-adaptation abilities, the robot can adapt seamlessly to complex underwater environments without the need for sophisticated controllers. Lateral line stimulation allows the robot to execute forward and backward swimming, as well as left and right curls. We graded the forward and backward swimming speed by varying the stimulus frequency and pulse width. The optimal stimulus parameters are as follows: amplitude 3.0-4.5 V, frequency 5-20 Hz, and pulse width 40-60 ms. The maximum success rates for forward and backward swimming responses to stimuli were approximately 96% and 77%, respectively. Utilizing lower pulse frequencies (5-20 Hz) and wider pulse widths (40-60 ms) facilitated sustained and efficient activation of the lateral line neural system. Electrical stimulation of the lateral line increases the eel's forward swimming speed by approximately 70%, while the electronic backpack draws only 48.1 mW of external power. Compared to bio-inspired robots, the eel-machine hybrid robot consumes 1.5 to 1100 times less external power per unit mass. The remarkable efficiency of this bio-robot enhances its performance in tasks such as underwater cave exploration.
Romano et al
Animal-robot interaction (ARI) is an emerging field that uses biomimetic robots to replicate biological cues, enabling controlled studies of animal behavior. This study investigates the potential for ARI systems to induce local enhancement (e.g., where animals are attracted to areas based on the presence or actions of conspecifics) in the Mediterranean fruit fly, Ceratitis capitata, a major agricultural pest. We developed biomimetic agents that mimic C. capitata in morphology and color, to explore their ability to trigger local enhancement. The study employed three categories of artificial agents: Full Biomimetic Agent (FBA), Partial Biomimetic Agent (PBA), and Non-Biomimetic Agent (NBA), in both motionless and moving states. Flies exposed to motionless FBAs showed a significant preference for areas containing these agents compared to areas with no agents. Similarly, moving FBAs also attracted more flies than stationary agents. Time spent in the release section before making a choice and the overall experiment duration were significantly shorter when conspecifics or moving FBAs were present, indicating that C. capitata is highly responsive to biomimetic cues, particularly motion. These results suggest that ARI systems can be effective tools for understanding and manipulating local enhancement in C. capitata, offering new opportunities for sustainable pest control in agricultural contexts. Overall, this research demonstrates the potential of ARI as an innovative, sustainable approach to insect population control, with broad applications in both fundamental behavioral research and integrated pest management.
Martí Verdaguer Mallorquí et al 2025 Bioinspir. Biomim. 20 031001
Biomimetic research has drawn inspiration from the knowledge acquired from the diverse morphologies and specialized functions of hymenopteran ovipositors. For example, the morphology of the honeybee stinger was used to create surgical needles that reduce insertion forces, minimize tissue damage, and increase precision. Similarly, the reciprocating drilling mechanisms observed in wood-boring hymenopterans inspired the development of steerable probes for neurosurgery, offering improved control and reduced trauma during penetration. Despite these advances, the ovipositors of sawflies, which promise intricate cutting mechanisms, have remained poorly studied in biomimetics. Unlike wood-boring species, most sawflies typically cut through soft plant tissues using their saw-like ovipositors, which could inspire new designs for precise cutting and sawing devices. This review advocates the need for further research into the structure, mechanical properties and functional principles of sawfly ovipositors to fully exploit their potential in bio-inspiration. We highlight the lack of detailed mechanical studies connecting ovipositor morphology to cutting efficiency and substrate interactions. Understanding these relationships could uncover new principles for engineering applications, such as medical or industrial cutting tools.
Natasha A Rouse et al 2025 Bioinspir. Biomim. 20 036004
Bio-inspired robot controllers are becoming more complex as we strive to make them more robust to, and flexible in, noisy, real-world environments. A stable heteroclinic network (SHN) is a dynamical system that produces cyclical state transitions using noisy input. SHN-based robot controllers enable sensory input to be integrated at the phase-space level of the controller, thus simplifying sensor-integrated, robot control methods. In this work, we investigate the mechanism that drives branching state trajectories in SHNs. We liken the branching state trajectories to decision-splits imposed into the system, which opens the door for more sophisticated controls–all driven by sensory input. This work provides guidelines to systematically define an SHN topology, and increase the rate at which desired decision states in the topology are chosen. Ultimately, we are able to control the rate at which desired decision states activate for input signal-to-noise ratios across six orders of magnitude.
Zach J Patterson et al 2025 Bioinspir. Biomim. 20 036003
Most walking organisms tend to have relatively light limbs and heavy bodies in order to facilitate rapid limb motion. However, the limbs of brittle stars (Class Ophiuroidea) are primarily comprised of dense skeletal elements, with potentially much higher mass and density compared to the body disk. To date, little is understood about how the relatively unique distribution of mass in these animals influences their locomotion. In this work, we use a brittle star inspired soft robot and computational modeling to examine how the distribution of mass and density in brittle stars affects their movement. The soft robot is fully untethered, powered using embedded shape memory alloy actuators, and designed based on the morphology of a natural brittle star. Computational simulations of the brittle star model are performed in a differentiable robotics physics engine in conjunction with an iterative linear quadratic regulator to explore the relationship between different mass distributions and their optimal gaits. The results from both methods indicate that there are robust physical advantages to having the majority of the mass concentrated in the limbs for brittle star-like locomotion, providing insight into the physical forces at play.
Nicole W. Xu et al 2025 Bioinspir. Biomim.
Invertebrate research ethics has largely been ignored compared to the consideration of higher order animals, but more recent focus has questioned this trend. Using the robotic control of Aurelia aurita as a case study, we examine ethical considerations in invertebrate work and provide recommendations for future guidelines. We also analyze these issues for prior bioethics cases, such as cyborg insects and the 'microslavery' of microbes. However, biohybrid robotic jellyfish pose further ethical questions regarding potential ecological consequences as ocean monitoring tools, including the impact of electronic waste in the ocean. After in-depth evaluations, we recommend that publishers require brief ethical statements for invertebrate research, and we delineate the need for invertebrate nociception studies to revise or validate current standards. These actions provide a stronger basis for the ethical study of invertebrates, with implications for individual, species-wide, and ecological impacts, as well as for studies in science, engineering, and philosophy.
Naeem Haider et al 2025 Bioinspir. Biomim. 20 026025
One of the most ancient and evolutionarily conserved behaviors in the animal kingdom involves utilizing wind-borne odor plumes to track essential elements such as food, mates, and predators. Insects, particularly flies, demonstrate a remarkable proficiency in this behavior, efficiently processing complex odor information encompassing concentrations, direction, and speed through their olfactory system, thereby facilitating effective odor-guided navigation. Recent years have witnessed substantial research explaining the impact of wing flexibility and kinematics on the aerodynamics and flow field physics governing the flight of insects. However, the relationship between the flow field and olfactory functions remains largely unexplored, presenting an attractive frontier with numerous intriguing questions. One such question pertains to whether flies intentionally manipulate the flow field around their antennae using their wing structure and kinematics to augment their olfactory capabilities. To address this question, we first reconstructed the wing kinematics based on high-speed video recordings of wing surface deformation. Subsequently, we simulated the unsteady flow field and odorant transport during the forward flight of blue bottle flies (Calliphora vomitoria) by solving the Navier–Stokes equations and odorant advection–diffusion equations using an in-house computational fluid dynamics solver. Our simulation results demonstrated that flexible wings generated greater cycle-averaged aerodynamic forces compared to purely rigid flapping wings, underscoring the aerodynamic advantages of wing flexibility. Additionally, flexible wings produced 25% greater odor intensity, enhancing the insect's ability to detect and interpret olfactory cues. This study not only advances our understanding of the intricate interplay between wing motion, aerodynamics, and olfactory capabilities in flying insects but also raises intriguing questions about the intentional modulation of flow fields for sensory purposes in other behaviors.
Oliver Hausdörfer et al 2025 Bioinspir. Biomim. 20 026024
Animals have to navigate complex environments and perform intricate swimming maneuvers in the real world. To conquer these challenges, animals evolved a variety of motion control strategies. While it is known that many factors contribute to motion control, we specifically focus on the role of stretch sensory feedback. We investigate how stretch feedback potentially serves as a way to coordinate locomotion, and how different stretch feedback topologies, such as networks spanning varying ranges along the spinal cord, impact the locomotion. We conduct our studies on a simulated robot model of the lamprey consisting of an articulated spine with eleven segments connected by actuated joints. The stretch feedback is modeled with neural networks trained with deep reinforcement learning. We find that the topology of the feedback influences the energy efficiency and smoothness of the swimming, along with various other metrics characterizing the locomotion, such as frequency, amplitude and stride length. By analyzing the learned feedback networks, we highlight the importances of very local, caudally-directed, as well as stretch derivative information. Our results deliver valuable insights into the potential mechanisms and benefits of stretch feedback control and inspire novel decentralized control strategies for complex robots.
Donato Romano and Cesare Stefanini 2025 Bioinspir. Biomim.
Animal-robot interaction (ARI) is an emerging field that uses biomimetic robots to replicate biological cues, enabling controlled studies of animal behavior. This study investigates the potential for ARI systems to induce local enhancement (e.g., where animals are attracted to areas based on the presence or actions of conspecifics) in the Mediterranean fruit fly, Ceratitis capitata, a major agricultural pest. We developed biomimetic agents that mimic C. capitata in morphology and color, to explore their ability to trigger local enhancement. The study employed three categories of artificial agents: Full Biomimetic Agent (FBA), Partial Biomimetic Agent (PBA), and Non-Biomimetic Agent (NBA), in both motionless and moving states. Flies exposed to motionless FBAs showed a significant preference for areas containing these agents compared to areas with no agents. Similarly, moving FBAs also attracted more flies than stationary agents. Time spent in the release section before making a choice and the overall experiment duration were significantly shorter when conspecifics or moving FBAs were present, indicating that C. capitata is highly responsive to biomimetic cues, particularly motion. These results suggest that ARI systems can be effective tools for understanding and manipulating local enhancement in C. capitata, offering new opportunities for sustainable pest control in agricultural contexts. Overall, this research demonstrates the potential of ARI as an innovative, sustainable approach to insect population control, with broad applications in both fundamental behavioral research and integrated pest management.
Ophelia Bolmin et al 2025 Bioinspir. Biomim. 20 026022
Interlocking metasurfaces (ILMs) are patterned arrays of mating features that enable the joining of bodies by constraining motion and transmitting force. They offer an alternative to traditional joining solutions such as mechanical fasteners, welds, and adhesives. This study explores the development of bio-inspired ILMs using a problem-driven bioinspired design (BID) framework. We develop a taxonomy of attachment solutions that considers both biological and engineered systems and derive conventional design principles for ILM design. We conceptualize two engineering implementations to demonstrate concept development using the taxonomy and ILM conventional design principle through the BID framework: one for rapidly assembled bridge truss members and another for modular microrobots. These implementations highlight the potential of BID to enhance performance, functionality, and tunability in ILMs.
Guanran Pei and Josie Hughes 2025 Bioinspir. Biomim. 20 026019
Due to the complexity of deformations in soft manipulators, achieving precise control of their orientation is particularly challenging, especially in the presence of external disturbances and human interactions. Inspired by the decentralized growth mechanism of plant gravitropism, which enables plants' roots and stems to grow in the direction of gravity despite complex environmental interactions, this study proposes a decentralized control strategy for robust orientation control of multi-segment soft manipulators. This gravitropism-inspired decentralized controller was validated through simulations for convergence and robustness, and benchmarked against the traditional inverse Jacobian-based controller on a large-scale multi-segment soft manipulator. Experimental results demonstrate that the decentralized controller achieves comparable convergence and better control precision to the inverse Jacobian-based controller, while significantly outperforming it in disturbance rejection. Even in the presence of partial damage and human interaction, the decentralized controller provides robust control. This study provides a robust new approach for managing disturbances in complex environments, laying the foundation for further exploration of decentralized control strategies in soft robotics.
Reno Pangestu et al 2025 Bioinspir. Biomim. 20 026015
A transverse ledge brachiation robot is designed to move transversely along a ledge on a vertical wall by generating energy from the swinging motion of its lower limbs. This method reduces the force required by the upper limbs to propel the robot forward. However, previously developed robots often encounter a common issue: lateral posture deviation, which is typically caused by slippage when the grippers grasp the ledge. Without compensation, this deviation can increase the risk of falling during continuous brachiation cycles. To address this problem, we propose an active wrist joint mechanism utilizing a feedback control approach as the compensator to effectively correct gripper position deviations. In our robot design, we develop a motion control strategy that coordinates the upper and lower limbs in order to maintain the swing energy that can be transferred to the subsequent cycles. Then we propose a potential energy-based phase switching condition in the motion control strategy in order to simplify the computation process. Simulation results demonstrate that the optimized parameter for compensation effectively maintains the gripper's position relative to the ledge throughout 55 brachiation cycles. Furthermore, experiment validation shows that this posture compensation reduces deviation by one-third compared to results without compensation. This study has demonstrated a 68% improvement in energy consumption efficiency for continuous transverse brachiation compared to the previous generation, as well as a 37% improvement over transverse ricochetal brachiation locomotion.