Although human periodontal ligament stem cell (hPDLSC)-based tissue engineering have been promising for regenerating periodontal bone tissue, their effectiveness is limited by the lack of an optimal delivery vehicle for these cells. Therefore, this study reports a gelatin methacryloyl microsphere system, incorporating injectable platelet-rich fibrin and nano-hydroxyapatite (nHA) as carriers for hPDLSCs. These hybrid microspheres were effectively produced using droplet microfluidics technology, achieving a size range of 100–300 μm. Importantly, the release profile of multiple growth factors (GFs) from the microspheres was significantly extended, lasting up to 28 d. Moreover, the released GFs and nHA considerably enhanced the proliferation of encapsulated hPDLSCs along with their spreading and osteogenic differentiation. The microspheres facilitated the development of Spheroid-like cell aggregates within two weeks of culture, demonstrating a promising approach for advanced periodontal bone tissue regeneration.

Purpose-led Publishing is a coalition of three not-for-profit publishers in the field of physical sciences: AIP Publishing, the American Physical Society and IOP Publishing.
Together, as publishers that will always put purpose above profit, we have defined a set of industry standards that underpin high-quality, ethical scholarly communications.
We are proudly declaring that science is our only shareholder.
Could you publish open access in this journal at no cost?
Find out if your institution is participating in the transformative agreement with OhioLink to cover unlimited APC’s.
Find out how to take advantage

ISSN: 1748-605X
Biomedical Materials publishes original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare.
Ke Yi et al 2025 Biomed. Mater. 20 035023
Di Xiao et al 2025 Biomed. Mater. 20 032005
Cardiovascular diseases (CVD) can cause narrowing or blockage in small diameter blood vessels (less than 6 millimeters in diameter). Bypass surgery, which involves replacing damaged native blood vessels, can address various CVD. Recent advancements in manufacturing techniques and the application of new materials have led to the creation of artificial blood vessels that more closely resemble native vessels. By combining different materials and manufacturing methods, it is possible to mimic the structure and function of native blood vessels. Surface coating technologies are also employed in the production of artificial blood vessels to replicate certain vascular functions, such as regulating thrombosis and dissolution. Although most products are not yet ready for clinical use, research and development in artificial blood vessels are progressing faster than ever before (figure 1).
Huijuan Fan et al 2025 Biomed. Mater. 20 032004
Pancreatic duct strictures, which can arise from trauma, inflammation, or malignancy, often result in complications such as duct obstruction, pancreatic parenchymal hypertension, and ischemia. Endoscopic stenting is an effective therapeutic approach for managing these strictures. However, traditional plastic pancreatic duct stents fail to conform to the physiological curvature of the pancreas, while metal pancreatic duct stents with flared ends reduce migration but are associated with complications such as de novo strictures. Additionally, plastic and metal pancreatic duct stents require surgical removal. Whereas biodegradable pancreatic duct stents present a promising alternative due to their superior biocompatibility and ability to decompose into non-toxic materials, potentially eliminating the need for additional surgeries. Despite these advantages, biodegradable pancreatic duct stents remain in the experiment stage. This review assesses current materials of pancreatic duct stents, and emphasizes recent advancements in biodegradable options and emerging trends in clinical applications.
Ming-feng Wang et al 2025 Biomed. Mater. 20 032003
Biomedical implants are extensively utilized to replace hard-tissue defects owing to their biocompatibility and remarkable tissue-affinity. The materials and functional design are selected based on the resultant osseointegration level and resistance to infection, and these considerations constitute the dominant research topic in this field. However, high rates of implantation failure and peri-implantitis have been reported. Current research on biomedical-implant design encompasses enhancement of the implant surface properties, such as the roughness, nano/micro topography, and hydrophilicity, along with the realization of advanced features including antibacterial properties and cell and immunomodulation regulation. This review considers the two achievements of contemporary implant manufacturing; namely, osseointegration and the realization of antibacterial properties. Present mainstream surface modifications and coatings are discussed, along with functional design technologies and achievements. The impacts of direct surface-treatment techniques and osteogenic functional coatings on osseointegration performance and antibacterial surface structures are elucidated, considering inorganic and organic coatings with antibacterial properties as well as antibiotic-releasing coatings. Furthermore, this review highlights recent advancements in physically driven antimicrobial strategies. Expanding upon existing research, future directions for implant studies are proposed, including the realization of comprehensive functionality that integrates osseointegration and antibacterial properties, as well as patient-specific design. Our study presents a comprehensive review and offers a novel perspective on the design of biomedical implants for enhanced versatility. An in-depth exploration of future research directions will also stimulate subsequent investigations.
Mohammed A El-Bakary et al 2025 Biomed. Mater. 20 035022
Knot stability and security are crucial factors in surgical suture performance, ensuring optimal tension distribution and minimizing the risk of wound dehiscence. The mechanical behavior of surgical knots is influenced by suture material properties, knot configuration, and environmental factors such as localized pH deviations, which can accelerate material degradation. This study investigates the impact of pH-induced degradation on the mechanical and optomechanical performance of square and surgeon's knots tied with Maxon and Monocryl sutures under acidic (pH 5) and neutral (pH 7) conditions. Stress–strain analysis and Mach–Zehnder interferometry were employed to assess Young's modulus, mechanical loss percentages, tensile strength, toughness, phase maps, and 3D refractive index profiles over 20 d. Young's modulus results revealed significant reductions in acidic conditions. Maxon's surgeon knot decreased from 516 MPa to 228 MPa, while Monocryl's surgeon knot dropped from 434 MPa to 132 MPa over 20 d. Mechanical loss was notably higher in acidic conditions, with Maxon's surgeon knot exhibiting a 65.30% reduction and Monocryl's surgeon knot showing an 82.3% decrease. Toughness declined similarly, particularly in knotted configurations. Phase maps revealed substantial structural distortion, especially in Monocryl's perpendicular orientation at pH 5, indicating severe degradation. 3D refractive index profiles demonstrated that Maxon maintained greater internal uniformity, while Monocryl showed pronounced structural disruption under acidic conditions. Maxon's stability under different pH conditions makes it suitable for long-term applications, while Monocryl's rapid degradation suggests its suitability for scenarios requiring faster material breakdown. These findings provide valuable insights for suture selection in diverse wound conditions.
Di Xiao et al 2025 Biomed. Mater. 20 032005
Cardiovascular diseases (CVD) can cause narrowing or blockage in small diameter blood vessels (less than 6 millimeters in diameter). Bypass surgery, which involves replacing damaged native blood vessels, can address various CVD. Recent advancements in manufacturing techniques and the application of new materials have led to the creation of artificial blood vessels that more closely resemble native vessels. By combining different materials and manufacturing methods, it is possible to mimic the structure and function of native blood vessels. Surface coating technologies are also employed in the production of artificial blood vessels to replicate certain vascular functions, such as regulating thrombosis and dissolution. Although most products are not yet ready for clinical use, research and development in artificial blood vessels are progressing faster than ever before (figure 1).
Huijuan Fan et al 2025 Biomed. Mater. 20 032004
Pancreatic duct strictures, which can arise from trauma, inflammation, or malignancy, often result in complications such as duct obstruction, pancreatic parenchymal hypertension, and ischemia. Endoscopic stenting is an effective therapeutic approach for managing these strictures. However, traditional plastic pancreatic duct stents fail to conform to the physiological curvature of the pancreas, while metal pancreatic duct stents with flared ends reduce migration but are associated with complications such as de novo strictures. Additionally, plastic and metal pancreatic duct stents require surgical removal. Whereas biodegradable pancreatic duct stents present a promising alternative due to their superior biocompatibility and ability to decompose into non-toxic materials, potentially eliminating the need for additional surgeries. Despite these advantages, biodegradable pancreatic duct stents remain in the experiment stage. This review assesses current materials of pancreatic duct stents, and emphasizes recent advancements in biodegradable options and emerging trends in clinical applications.
Ming-feng Wang et al 2025 Biomed. Mater. 20 032003
Biomedical implants are extensively utilized to replace hard-tissue defects owing to their biocompatibility and remarkable tissue-affinity. The materials and functional design are selected based on the resultant osseointegration level and resistance to infection, and these considerations constitute the dominant research topic in this field. However, high rates of implantation failure and peri-implantitis have been reported. Current research on biomedical-implant design encompasses enhancement of the implant surface properties, such as the roughness, nano/micro topography, and hydrophilicity, along with the realization of advanced features including antibacterial properties and cell and immunomodulation regulation. This review considers the two achievements of contemporary implant manufacturing; namely, osseointegration and the realization of antibacterial properties. Present mainstream surface modifications and coatings are discussed, along with functional design technologies and achievements. The impacts of direct surface-treatment techniques and osteogenic functional coatings on osseointegration performance and antibacterial surface structures are elucidated, considering inorganic and organic coatings with antibacterial properties as well as antibiotic-releasing coatings. Furthermore, this review highlights recent advancements in physically driven antimicrobial strategies. Expanding upon existing research, future directions for implant studies are proposed, including the realization of comprehensive functionality that integrates osseointegration and antibacterial properties, as well as patient-specific design. Our study presents a comprehensive review and offers a novel perspective on the design of biomedical implants for enhanced versatility. An in-depth exploration of future research directions will also stimulate subsequent investigations.
Jiejie Guo et al 2025 Biomed. Mater. 20 032002
Bone injury presents a prevalent challenge in clinical settings, with traditional treatment modalities exhibiting inherent limitations. Recent advancements have highlighted the potential of combining physical exercise intervention and innovative materials to enhance bone repair and recovery. This review explores the synergistic effects of physical exercise and novel materials in promoting bone regeneration, with a particular focus on the role of neurovascular coupling (NVC) mechanisms. Physical exercise not only stimulates bone cell function and blood circulation but also enhances the bioactivity of novel materials, such as nanofiber membranes and smart materials, which provide supportive scaffolds for bone cell attachment, proliferation, and differentiation. NVC, involving the interaction between neural activity and blood flow, is integral to the bone repair process, ensuring the supply of nutrients and oxygen to the injured site. Studies demonstrate that the combination of physical exercise and novel materials can accelerate bone tissue regeneration, with exercise potentially enhancing the bioactivity of materials and materials improving the effectiveness of exercise. However, challenges remain in clinical applications, including patient variability, material biocompatibility, and long-term stability. Optimizing the integration of physical exercise and novel materials for optimal therapeutic outcomes is a key focus for future research. This review examines the collaborative mechanisms between physical exercise, novel materials, and NVC, emphasizing their potential and the ongoing challenges in clinical settings. Further exploration is needed to refine their application and improve bone repair strategies.
Chengyan Bai et al 2025 Biomed. Mater. 20 032001
Intervention without implantation has become a requirement for developing percutaneous coronary intervention for coronary heart disease. In this paper, the recent advances of three representative types of bioresorbable metal coronary drug-eluting stents (DESs) are reviewed, and the material composition, structural design, mechanical properties and degradability of iron-based, magnesium-based and zinc-based bioresorbable metal coronary DES are analyzed. The methods of regulating the radial strength and degradation rate of the coronary stents are summarized, and the in vivo/in vitro performance evaluation methods and ideal testing systems of the bioresorbable metal coronary DES are analyzed. Advances made in bioresorbable metal coronary DES, the existing shortcomings and optimization methods are proposed, and the future development direction is prospected.
Leouafi et al
The middle ear, which lies between the external auditory canal and the inner ear, comprises the tympanic membrane, the ossicular chain, as well as the associated muscles, ligaments, and the middle ear cavity. Its primary function is to transmit vibratory energy from the air to the cochlear fluids via the ossicular chain. This part of the ear can be damaged by cholesteatoma, which can affect all three ossicles,necessitating ossiculoplasty to restore sound transmission. Ossiculoplasty is the preferred intervention for restoring the mechanism of sound transmission in patients with ossicular deformities. However, the complexity and extended duration of the surgery can significantly impact the patient's quality of life. To address these challenges, our work employs 3D printing technology for the reconstruction of the patient's ear ossicles. This involves detailed 3D modeling and reconstruction of the ear ossicles to obtain precise measurements and visualize the unique anatomical structure of each patient.The model presented in this study is a prototype designed to validate the form and dimensions of a total ossicular replacement prosthesis. Our radiologists and traumatologists reviewed both the form and dimensions and deemed them realistic, ensuring they aligned with clinical requirements. It is important that medical devices,especially those designed for long-term implantation,must undergo strict regulatory testing, which can take several years. Standards such as ISO 13485, ISO 14971and ISO 5832 require thorough validation to ensure safety, effectiveness, and quality. While this prototype represents an important step, further testing, and regulatory approval will be necessary before it can be used in clinical settings. By leveraging advanced materials and precise 3D printing techniques, these custom-made prostheses simplify the surgical procedure and enhance patient outcomes by providing tailored solutions that meet specific anatomical and functional needs. This innovative approach represents a significant advancement in treating ossicular deformities, ensuring both efficacy and improved patient satisfaction.
Yin et al
Critical bone defects require repair materials for optimal treatment. The current range of available materials has limitations, including donor availability, rejection, disease transmission, and inadequate filling. Calcium phosphate bone cement (CPC) is a bone repair material, but most CPCs on the mar-ket have two drawbacks: difficulty degrading and prolonged solidification time. The purpose of this study was to develop a CPC that is rapidly moldable and biodegradable, improves the acid‒base mi-croenvironment, and is more suitable for clinical use. This CPC was prepared from β-tricalcium phosphate bioceramics (TCP) and calcium phosphate monohydrate and is designated a bioceramic calcium phosphate bone cement (BCPC). TCP was used as a control to determine the biocompatibil-ity of BCPC and its impact on osteogenesis-related protein activity. The BCPC and TCP implants were placed in the femurs of rabbits, and X-ray/micro-CT images were obtained at weeks 4, 8, and 12 postoperatively. Additionally, samples from the three time points were stained and analyzed for their osteogenic and degradation properties. BCPC submerged in phosphate buffer reached a neutral pH of 6.98 ± 0.02 on Day 3. In vitro tests revealed that BCPC increased alkaline phosphatase and osteo-pontin activities in MC3T3-E1 cells. The X-ray and micro-CT results revealed that BCPC degraded while the TCP volume remained stable. Micro-CT revealed that BCPC degraded by 26.93% and formed 12.89% new bone by week 12. The histological results showed that BCPC had good bio-compatibility and osteointegration ability. BCPC is characterized by rapid solidification and molding and good biocompatibility, and its degradation rate matches the rate of bone regeneration. BCPC could rapidly improve the surrounding pH, providing the foundation for its clinical application.
Pawar et al
In this study the first-time introduction of Kollidon® 25 (K25) thermoplastic polymer, which was not earlier explored in PBF-based 3D printing technology along with the simultaneous usage of Kollidon® SR (KSR) to form a thermoplastic polymer composite for the development of tunable solid oral dosage form (SODFs). In addition to this, a novel laser-absorbing dye i.e., Pigment Green 7 (PG-7) was also introduced to facilitate the laser sintering process of the used thermoplastic polymer composites. Sintered tablets obtained from the used thermoplastic polymer bed composites were systematically characterized using various analytical tools and in vitro examinations as well. The physicochemical characterization of all sintered tablet batches (B1-B7) was within the acceptable limit. Thermal and chemical analyses revealed no detrimental physical or chemical interactions between the components, as well as after exposure of sintered tablet batches to laser and temperature. Powder X-ray diffraction diffractograms suggested a change in the native state of tinidazole (TNZ, used as an active pharmaceutical ingredient) to amorphous due to the exposure of sintering parameters. Scanning electron microscopy micrographs of all batches showed intense fusion of the particles in the polymer composite. The sintered tablet batches B1 to B7 exhibited a drug content ranging from 90.36 ± 4.32% to 99.36 ± 1.24%. TNZ released in an acidic medium for up to 2.0 h from different sintered tablets were around 100% to 12% from B1 to B7 batches, respectively following alkaline medium for up to 12.0 h. TNZ release pattern was fine tuned in accordance with the changes in the composition ratio of Kollidon® 25 and Kollidon® SR polymers in order to get quick release to sustained release. This prepared unique thermoplastic pharmaceutical grade polymer composite might broaden the range of materials accessible for PBF-mediated 3D printing in pharmaceutical industrial applications in near future.
Cilasun et al
Despite their impact on cancer therapy, limitations such as systemic toxicity and drug resistance are encountered with platinum-based drugs. This study explores the potential of combining PtIV-based NP with Carmofur (Car) to address these issues. In this study, platinum nanoparticles (PtNP) and Car-loaded PtNP (Car@PtNP) were synthesized and their cytotoxic and apoptotic effects on colorectal and breast cancer cells were evaluated. Following characterization of the synthesized NPs by DLS, UV-VIS spectroscopy, FTIR, and STEM, it was found that the average size of PtNPs was 55.42 nm and the size increased to approximately 186.06 nm upon synthesis of Car@PtNP. MTT assays demonstrated that Car@PtNP exhibited higher levels of cellular toxicity than carmofur alone. While it significantly decreased cell viability in both colon and breast cancer cells, its toxicity to HUVEC cells was minimal. Treatment of MCF-7 and HCT116 cells with 50 µg/mL of free Car resulted in cell viabilities of 65.2% and 76.93%, respectively, whereas the viability of cells treated with Car@PtNP decreased to 49.60% and 55.47%. Flow cytometric analysis confirmed that apoptosis was increased in healthy HCT116 cells treated with Car@PtNP, with a marked increase in both early and late apoptotic cell populations. Furthermore, these results were confirmed by Hoescht and Rhodamin123 immunofluorescence staining, and significant mitochondrial dysfunction and apoptotic morphological changes were observed in treated cells. The findings underscore the promise of Car@PtNP as a novel chemotherapeutic approach, integrating the benefits of PtIV complexes and Car to enhance antitumor efficacy while mitigating the drawbacks of conventional platinum-based therapies.
Ferrari et al
Vascular tissue engineering endeavors to design, fabricate, and validate biodegradable and bioabsorbable small-diameter vascular scaffolds engineered with bioactive molecules, capable of meeting the challenges imposed by commercial vascular prostheses. A comprehensive investigation of these engineered scaffolds in bioreactor is deemed essential as a prerequisite before any in vivo experimentation in order to get information regarding their behavior under physiological conditions and predict the biological activities they will possess. This study focuses on an innovative electrospun scaffold made of poly(caprolactone) and poly(glycerol sebacate), integrating quercetin, able to modulate inflammation, and gelatin, necessary to reduce permeability. A custom-made bioreactor was used to assess the performances of the scaffolds maintained under different pressure regimes, covering the human physiological pressure range. As results, the 3D microfibrous architecture was notably influenced by the release of bioactives, maintaining the adequate properties needed for the in vivo regeneration and scaffolds showed mechanical properties similar to human native artery. Release of gelatin was adequate to avoid blood leakage and useful to make the material porous during the testing period, whereas the amount of released quercetin was useful to counteract the post-surgery inflammation. This study showcases the successful validation of an engineered scaffold in a bioreactor, enabling to consider it as a promising candidate for vascular substitutes in in vivo applications. Our approach represents a significant leap forward in the field of vascular tissue engineering, offering a multifaceted solution to the complex challenges associated with small-diameter vascular prostheses.
Chien-Chun Chang et al 2025 Biomed. Mater. 20 035021
The success of tumor prosthesis relies on the preclusion of deep infection and local recurrence in limb sparing surgery. The orthopedic implants enabling to simultaneously possess the antibacterial function and anticancer ability have become a desirable local therapy in the treatment of bone cancer. In this regard, we proposed a promising concept of the sequential release in a dual-drug system by combing titania nanotubes and chitosan as drug nanoreservoirs and sustained release films, respectively. An electrochemical anodization technique, controlled by anodization voltage, electrolyte composition, and processing time, was used to fabricate self-ordered titania nanotubes on the titanium surface, with their lengths simply tuned by the processing time, for drug loading. Two drugs of cisplatin and vancomycin as model anticancer and antibiotic, respectively, were sequentially loaded in nanotubes to investigate the release kinetics. The release profiles of cisplatin and vancomycin were found to be related to the spatial positioning of each drug on the nanotubes. Such a release sequence can be attributed to the anisotropic diffusion of drugs from the nanotubes, which can be further sustained for over 4 weeks through chitosan coverage. The drug release behavior was first evaluated in water using ultraviolet–visible spectroscopy for the quantitative analysis of release kinetics over time. The influence of dual-drug-loaded nanotubes on the growth of Staphylococcus aureus and osteogenic sarcoma in vitro was systematically evaluated for the therapeutic efficacy of bone cancer treatment. A high correlation between the viabilities of bacteria and cells and dual-drug release profiles was observed, indicating the feasibility of our nanotube-based concept utilizing a sequential release pattern to combat initial bacterial infection and prevent local recurrence.
Jun Yao et al 2025 Biomed. Mater. 20 035019
Osteoarthritis (OA) has become a common degenerative joint disease, lacking clinical means to alleviate this disease. Melittin, taken from natural honeybee venom, possesses outstanding anti-inflammatory properties and has great potential to treat OA. However, its high toxicity and hemolytic properties limit its application. In this work, a biocompatible hydrogel was prepared from extracellular matrix (ECM) of rib cartilage, possessing fibrous mesh structure characteristics, which was beneficial for melittin loading. It was found that the use of ECM hydrogel loaded with melittin can reduce the intrinsic toxicity of melittin and prolong the release behavior, simultaneously. The in vitro study demonstrated that melittin-hydrogel could effectively inhibit phosphorylation-ERK/JNK, prevent the exacerbation of TNF-α-induced apoptosis in ATDC5 cells, and reduce their inflammatory markers, effectively alleviating OA and preventing cartilage degradation. Subsequently, in vivo studies have demonstrated that injecting melittin-hydrogel into the joint cavity of OA mice can effectively reduce cartilage degeneration. These findings suggest that melittin-hydrogel plays a critical role in the development of OA and may provide a therapeutic option for the treatment of OA disease.
Paige N Rockwell et al 2025 Biomed. Mater. 20 035016
The erosion and drug release behavior of an injectable hydrogel composed of ethoxylated trimethylolpropane tri-3-mercaptopropionate (ETTMP) and poly(ethylene glycol) diacrylate were determined under physiological conditions. Water and polymer mass changes were monitored over time to characterize the swelling/deswelling and erosion of the hydrogel tablets. Experimental data were collected for hydrogels with varying polymer fractions. These data were used to develop an empirical model to predict the eroding mass change and equilibrium water content across different compositions. Three easily detectable model drugs (methylene blue (MB), sulforhodamine 101, and chloroquine) were loaded into 25, 35, and 50 wt% polymer hydrogels to understand their drug release behavior. The gelation time and time for total drug release were dependent on the weight fraction of the polymer in the hydrogel and varied with the pH of the drug solutions, with more acidic drugs increasing gelation time. Complete drug release was not observed for MB because of the reaction with ETTMP thiol groups, demonstrating the importance of understanding the potential interactions between the drug and polymer. Drug-loaded hydrogels were also monitored for erosion and were found to swell more than their neat counterparts for all drugs tested, suggesting an effect of drug loading on the extent of hydrogel crosslinking.
Yin Xu et al 2025 Biomed. Mater. 20 035015
Periodontitis seriously affects people's daily health, and the development of a non-antibiotic bio-adhesive with antimicrobial and periodontitis regeneration for periodontal pockets will effectively promote the treatment of periodontitis. In this study, we constructed a hybrid hydrogel (GelMA-BC-PL) by introducing aldehyde bacterial cellulose (BC) short nanofibers into the photosensitive hydrogel gelatin methacryloyl (GelMA), which binds to periodontal tissues to play an adhesive role through the Schiff base reaction, and further introducing -polylysine (PL), which could achieve the adhesive, antibacterial, and regenerative effect. Pigskin adhesion experiments showed that the adhesion of GelMA hydrogel to pigskin was only 0.39 N, while that of GelMA-BC-PL reached 1.42 N. The adhesion performance of the hydrogel was significantly improved by adding aldehyde BC nanofibers. Due to the introduction of PL, the antimicrobial properties of the hybrid hydrogel against two typical periodontitis bacteria (porphyromanas gingivalis and fusobacterium nucleatum), were significantly improved. Experiments with human periodontal membrane fibroblasts showed that the hybrid hydrogel had excellent cell spreading and proliferation promotion properties. The hybrid hydrogel simultaneously achieves adhesion, antimicrobial properties and promotes periodontal regeneration, which has great potential for application in the treatment of periodontitis diseases.
Meiting Lin et al 2025 Biomed. Mater. 20 035013
Curcumin is a natural polyphenol extracted from plants that can interact with various molecular targets, including antioxidant, antibacterial, anticancer, and anti-aging activities. Due to its variety of pharmacological activities and large margin pf safety, curcumin has been used in the prevention and treatment of various diseases, such as Alzheimer's, heart, and rheumatic immune diseases. To develop curcumin eye drops that can be used as antioxidant and antibacterial agents after phacoemulsification, we have designed a nano-based drug delivery system to improve curcumin bioavailability and duration of action. We successfully prepared zeolitic imidazolate framework-8 (ZIF-8) coated with chitosan–liposome (Cur@ZIF-8/CS-Lip) for curcumin delivery. It can release curcumin for over 20 h in vitro and exhibits excellent biosafety, antioxidant, and antibacterial activities. Therefore, we hypothesized that Cur@ZIF-8/CS-Lip could reduce the incidence of oxidative stress and infection after cataract surgery.
Marco Ferroni et al 2025 Biomed. Mater. 20 035012
The development of magnesium-based intraocular drug delivery devices holds significant promise for biomedical applications, particularly in treating wet age-related macular degeneration (AMD) using vascular endothelial growth factor inhibitors such as bevacizumab. Magnesium's rapid degradation, which can be finely tuned to achieve the controlled release required for AMD treatment, along with its well-established biocompatibility and biodegradable properties, positioning it as an ideal material for these applications. The study aimed to evaluate magnesium's potential as a carrier for ocular drug delivery systems by demontrating the stability of monoclonal antibodies, specifically bevacizumab, in the presence of magnesium corrosion products and the biocompatibility of these products with various cell lines, including murine fibroblasts (3T3), rat retinal Müller cells, and human retinal pigment epithelial cells (ARPE19). The stability of bevacizumab with pure magnesium (Mg) was investigated through an indirect enzyme-linked immunosorbent assay protocol, developed and customized for this specific aim. The biocompatibility of Mg corrosion products was assessed by toxicological evaluations through MTT and Trypan Blue Viability assays, along with cell cycle analysis. Results demonstrated no significant impact of Mg corrosion products on bevacizumab stability, with changes in mean values consistently below or equal to 10%. Furthermore, Mg extracts showed minimal cytotoxicity, as metabolic activity exceeded 80% across all cell lines, classified as Grade 0/1 cytotoxicity under ISO 10993-5 standards. Cell viability, proliferation, and morphology remained unaffected for up to 72 h of exposure. This study provides the first in vitro evaluation of bevacizumab's stability in the presence of magnesium corrosion products and its biocompatibility with retinal cell lines, laying the foundation for future ophthalmic research and underscoring magnesium's potential as a material for intraocular drug delivery systems.
Basel A Khader et al 2025 Biomed. Mater. 20 035003
Osteoporosis poses a significant public health challenge, necessitating advanced bone regeneration solutions. While gelatin methacrylate (GelMA) hydrogels show promise, conventional fabrication methods using aqueous two-phase systems (ATPS) often result in inconsistent mechanical properties and structural irregularities. This study presents an approach synthesizing new methods and parameters for bR-GelMA, utilizing stop-flow lithography (SFL) to fabricate highly elastic micro-particles incorporating bioactive glass particles. SFL, in contrast to ATPS, offers precise control over micro-particle formation, enabling the production of uniform and stable structures ideal for biomedical applications. The resulting elastic micro-particles demonstrate rapid degradation, enhanced cell proliferation, and improved mechanical strength without compromising flexibility. This innovative approach using SFL to fabricate GelMA-based micro-particles holds significant promise for bone regeneration and other critical therapeutic applications.
Menghong Li et al 2025 Biomed. Mater. 20 022011
Temporary anchorage devices (TADs) have evolved as useful anchorage providers for orthodontic tooth movements. To improve the stability of TADs, a number of modifications on their surface have been developed and investigated. This review comprehensively summarizes recent findings of clinically applied surface modifications of TADs and compared the biological improvement of these modifications. We focused on sandblasting, large-grit, acid etching (SLA), anodic oxidation (AO) and ultraviolet photofunctionalization (UVP). In vitro, in vivo and clinical studies of these surface modifications on TADs with clear explanations, low possibility of bias and published in English were included. Studies demonstrated that SLA, AO and UVP enhance cell attachment, proliferation, and differentiation in vitro. The biocompatibility and osteoconductivity of TAD surface are improved in vivo. However, in clinical studies, the changes are generally not so impressive. Furthermore, this review highlights the promising potential in combinations of different modifications. In addition, some other surface modifications, for instance, the biomimetic calcium phosphate coating, deserve to be proposed as future strategies.
Ezgi Demir et al 2025 Biomed. Mater. 20 022012
Bioprinting, an advanced additive manufacturing technology, enables the fabrication of complex, viable three-dimensional (3D) tissues using bioinks composed of biomaterials and cells. This technology has transformative applications in regenerative medicine, drug screening, disease modeling, and biohybrid robotics. In particular, in situ bioprinting has emerged as a promising approach for directly repairing damaged tissues or organs at the defect site. Unlike traditional 3D bioprinting, which is confined to flat surfaces and require complex equipment, in situ techniques accommodate irregular geometries, dynamic environments and simple apparatus, offering greater versatility for clinical applications. In situ bioprinting via hand-held devices prioritize flexibility, portability, and real-time adaptability while allowing clinicians to directly deposit bioinks in anatomically complex areas, making them cost-effective, accessible, and suitable for diverse environments, including field surgeries. This review explores the principles, advancements, and comparative advantages of robotic and hand-held in situ bioprinting, emphasizing their clinical relevance. While robotic systems excel in precision and scalability, hand-held bioprinters offer unparalleled flexibility, affordability, and ease of use, making them a valuable tool for personalized and minimally invasive tissue engineering. Future research should focus on improving biosafety, aseptic properties, and bioink formulations to optimize these technologies for widespread clinical adoption.
AN Stephen et al 2025 Biomed. Mater. 20 025043
NanoMIPs are nanoscale molecularly imprinted polymers (MIPs) ranging in size between 30 to 300 nm offering a high affinity binding reagent as an alternative to antibodies. They are being extensively researched for applications in biological extraction, disease diagnostics and biosensors. Various methodologies for nanoMIP production have been reported demonstrating variable timescales required, sustainability, ease of synthesis and final yields. We report herein a fast (<2 h) method for one pot aqueous phase synthesis of nanoMIPs using an acrylamide-based monomer and N,N'-methylenebisacrylamide crosslinker. NanoMIPs were produced for a model protein template namely haemoglobin from bovine species. We demonstrate that nanoMIPs can be produced within 15 min. We investigated reaction quenching times between 5 and 20 min. Dynamic light scattering results demonstrate a distribution of particle sizes (30–900 nm) depending on reaction termination time, with hydrodynamic particle diameter increasing with increasing reaction time. We attribute this to not only particle growth due to polymer chain growth but based on AFM analysis, also a tendency (after reaction termination) for particles to agglomerate at longer reaction times. Batches of nanoMIPs ranging 400–800 nm, 200–400 nm and 100–200 nm were isolated using membrane filtration. The batches were captured serially on decreasing pore size microporous polycarbonate membranes (800–100 nm) and then released with sonication to isolate nanoMIP batches in the aforementioned ranges. Rebinding affinities of each batch were determined using electrochemical impedance spectroscopy, by first trapping nanoMIP particles within an electropolymerized thin layer. Binding constants determined for NanoMIPs using the E-MIP sensor approach are in good agreement with surface plasmon resonance results. We offer a rapid (<2 h) and scalable method for the mass production (40–80 mg per batch) of high affinity nanoMIPs.