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Técnica de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
2 Centro de Investigación en Materiales Avanzados S. C., Miguel de Cervantes #120, Complejo
Industrial Chihuahua, CP 31109 Chihuahua, Chihuahua, Mexico
3 Department of Physics, Rzeszów University of Technology, al. Powstańców Warszawy 6,
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Abstract
We present a comparative analysis of the calculation performance for
several representations of the Landau–Lifshitz–Gilbert equation (spherical,
Cartesian and stereographic), underlining good perspectives to use the
stereographic projection for numerical simulations of magnetization dynamics.
The advantages of this approach include a five-time calculation speed-up
compared to the spherical coordinate representation together with unconditional
preservation of the magnetization vector length. Slightly faster calculations
are achievable with the Cartesian coordinate representation, which, however,
require renormalization of the magnetization vector at each integration step.

PACS numbers: 72.25.−b, 75.10.Hk, 75.60.Jk

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The recent increase of interest in spintronics [1], fuelled by the successful application of
the giant magnetoresistance effect [2] for the sensing heads of hard disk drives [3] and the
experimental confirmation of generation of magnetization oscillations with GHz frequencies
[4], attracted much attention to both theoretical and experimental studies of nanoscale
magnetization dynamics. Depending on the size of the magnetic element, it can be represented
by a single magnetic domain, fitting the macrospin approximation [5, 6] or will require a
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complete micromagnetic treatment [7]. In either case, the temporal dynamics of an individual
magnetic particle can be simulated by solving the Landau–Lifshitz–Gilbert (LLG) equation,
extended with Slonczewski’s spin torque term [8]

d �M
dt

= −γ �M × �H +
γ

MS

�M × ( �M × �J ) +
α

MS

�M × d �M
dt

, (1)

where �M is the magnetization vector saturated with magnitude MS ,

�H = �HE − (CDMx �ex − CAMz �ez)/MS (2)

is the effective magnetic field which includes the demagnetizing field defined by CD = MS

(for the case of the considered thin film), anisotropy field with coefficient CA = 2K1/μ0MS

and an external applied magnetic field �HE contributing to the energy density of the particle as
H( �M, �HE) = K1[1 − (Mz/MS)

2] + 1
2μ0M

2
x − μ0 �M · �HE . Quantity �J is the spin-polarization

vector of the injected current, γ = 2.21 × 105 m A−1 s−1 is the electron gyromagnetic ratio
and α is a phenomenological damping constant introduced by Gilbert [9].

Equation (1) can be rewritten in an explicit form as

d �M
dt

= −γ1 �M × �� +
γ1

MS

�M × ( �M × ��), (3)

with renormalized gyromagnetic ratio γ1 = γ /(1 + α2) and torque-inducing vectors

�� = �H + α �J , �� = �J − α �H. (4)

The question about the most efficient representation of the LLG equation for numerical
simulations has been widely discussed. The property of the system to preserve the length of
magnetization vector �M naturally suggests the use of spherical coordinates, describing the
magnetization evolution with azimuthal and vertical angles ϕ and θ , respectively [5, 6, 10].
In this way, equation (3) reduces to two ordinary differential equations

dθ

dt
= γ1[−sin ϕ�x + cos ϕ�y − cos θ(cos ϕ�x + sin ϕ�y) + sin θ�z],

sin θ
dϕ

dt
= −γ1[cos θ(cos ϕ�x + sin ϕ�y) − sin θ�z − sin ϕ�x + cos ϕ�y].

(5)

Despite the visual simplicity of equations (5), this system requires the calculation of
trigonometric functions to obtain the value of the derivatives, effective field (2) and to
reconstruct the three-dimensional behaviour of the magnetization vector as

�M = MS(cos ϕ sin θ, sin ϕ sin θ, cos θ). (6)

Such a pronounced use of trigonometric expressions, even with the advent of built-in
mathematical co-processors, results in an increased calculation time.

One of the alternatives concerns the representation of equation (3) in Cartesian coordinates,
which will result in a system of three ordinary differential equations

dMx

dt
= −γ1(My�z − Mz�y − Mx� + MS�x)

dMy

dt
= −γ1(Mz�x − Mx�z − My� + MS�y) (7)

dMz

dt
= −γ1(Mx�y − My�x − Mz� + MS�z)

with � = ( �M · ��)/MS .
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(a) (b)

Figure 1. Stereographic projection of a point on a sphere (a) and definition of a complex coordinate
ζ (b).

However, integration of system (7) does not automatically preserve the length of the
magnetization vector, requiring the renormalization of �M once per several integration steps.
Such an approach may seem artificial and was criticized in the literature (e.g., see [11]).
However, due to the total absence of trigonometric functions, it is expected to yield much
faster calculation times, which may justify the extra-time involved in the renormalization of
�M . Therefore, it is a question of extreme importance to find the optimal representation of

the LLG, allowing fast numerical calculations together with unconditional preservation
of the magnetization vector length. One of the suggested approaches concerns the use of
the midpoint integration rule [11, 12], which was proved to be a reliable method conserving
| �M| for any reasonable step. However, midpoint integration belongs to implicit methods,
applied to the original form of the LLG equation (1) with the derivatives in both left and right
sides.

Here we suggest to use the stereographic projection representation of the LLG equation,
which allows us to combine a simple explicit form of the system (suitable for using single-
step numerical integration schemes), absence of trigonometric functions and unconditional
preservation of | �M|.

The geometry introducing the stereographic projection is shown in figure 1. A phase point
lying on a sphere with radius MS (or | �m| = | �M|/MS ≡ 1 after the conversion to dimensionless
variables) can be projected to the {x, y} plane from either the North or the South pole. The
projection (figures 1(a) and (b)) from the South pole is defined by the complex variable

ζ = tan
θ

2
eiϕ (8)

and from the North pole by ζ ′ = 1/ζ ∗.
Figure 2 illustrates a three-dimensional phase portrait and its stereographic projection

from the South pole. As one can see, the stereographic projection allows a much clearer
view (in comparison with that of a 3D plot) for the complicated structure of a single-phase
trajectory connecting three stable points. In a similar way, the projections from the North and
South poles can be superimposed in the same plot, offering a visual description of the system
dynamics, which is simple to interpret.

As a result, using the equations from (A.19) one can write down a stereographic projection
representation of the LLG equation (see the details in the appendix)

2

1 + ζ ∗ζ
dζ

dt
= − iςγ

1 − iςα
(Hs+ − iςJs+)

= γ1[−(J+ + iςH+) + α(H+ − iςJ+)], (9)
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Figure 2. An illustrative phase trajectory (a) with the grey-filled easy magnetization plane [y, z].
Stereographic projection of the same trajectory (b) from the South pole with a unitary circle
corresponding to the ‘equator’ z = 0.

introducing sign variable ς = ±1 for the projection from the South and the North pole,
respectively. The rotated spherical component As+ of a vector �A in the rotated spherical basis
�b±, �b0 (defined in the appendix) is As+ = 2�b+ · �A = (A+ − ζ 2A− − 2ςαA0)/(1 + ζ ∗ζ ), where
A± and A0 are the irreducible spherical components of a Cartesian tensor [13].

It is worth mentioning that a similar methodology could also be applied to study the
evolution of quantum many-spin systems described in the framework of a coherent-state
representation [14, 15].

2. Results and discussion

To test the accuracy and numerical performance of the different representations of LLG
(Cartesian, spherical and stereographic), we carried out macrospin simulations for a spin
valve analyser layer with dimensions 91 × 50 × 6 nm3, using material parameters of Co
reported from the Co/Cu/Co spin valve experiments [4]: α = 0.014, CA = 500 Oe and
4πMS = 10 kOe. The integration of the real and imaginary parts of (9) perfectly matches
the check specimen results obtained for the spherical representation of LLG (5), as illustrated
in the upper panel of figure 3 for the averaged magnetization as a function of the injected
spin-polarized current (circles and solid line, respectively). This figure also displays the
most characteristic phase portraits (trajectories following the motion of the magnetization
vector tip around the unitary sphere) for the cases of magnetization reversal (antiparallel final
configuration, AP) and two steady oscillation modes (in-plane and out-of-plane precession,
IPP and OPP, respectively). The bottom panels of figure 3 feature the stereographic projections
of the same phase portraits. For the sake of clarity, each phase portrait was projected both
from the South and North poles, yielding a superimposed picture with all the phase trajectory
information contained within the unitary circle. In this way, the stereographic projection
offers a convenient representation of the three-dimensional dynamic picture on a compact 2D
plot. In all the cases, the initial orientation of the magnetization vector was in the vicinity
of the South pole, �m = �M/MS = (0, 0,−0.999), which will correspond to the origin of the
stereographic coordinates ζ = 0 when projected from the North pole. To benchmark the
numerical performance, we calculated the dynamical diagrams [8, 16] for the field ranges
HE = 0 − 2 MA m−1 and currents J = 0 − 200 mA over a 300 × 300 point grid. For
each point, the corresponding representation of the LLG equation was integrated using the
Heun method [17] with time step 0.1 ps, reconstructing the magnetization dynamics for
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Figure 3. Upper panel: comparison of the simulation results for the LLG written in stereographic
(circles) and spherical (solid line) projections, with the most characteristic phase portraits shown
in 3D representation. The grey plane in the phase portraits represents the easy magnetization plane
[y, z] with a vertical segment corresponding to easy axis direction. The black arrow shows the
averaged magnetization vector. Bottom panels: red and blue (online) or dark grey (print) contours
display the same phase portraits in stereographic projection from the North and South projector
poles, respectively. The phase portraits were calculated for the applied field H = 0.35 MA m−1

and injected spin-polarized currents: (a) 10 mA, (b) 75 mA and (c) 145 mA.

5 ns (5 × 104 points). As was anticipated, the spherical coordinate representation yielded the
longest calculation time, taken as the standard for performance comparison.

For the case of the stereographic projection, special attention was paid to study numerical
divergence occurring when the phase trajectory approaches the projector pole. The problem
may arise if the calculations use an integration step comparable with the time constant of the
system τ0 = 1/(γ1CA) ∼= 114 ps, when large values of dζ/dt may cause numerical instability
and overflow. To avoid such a situation, the projector pole was switched to the opposite one
upon reaching a certain threshold switching value |ζ |S . The lowest threshold considered was
equal to unity, requiring pole switching each time the phase trajectory crosses the equator of
sphere θ = π/2. Figure 4 shows the benchmarking curve for the stereographic projection as
a function of |ζ |S . As one can see from this figure, at the threshold of 100 and above, the
calculation time gravitates towards 20%, featuring an impressive five-time speed-up comparing
with the spherical coordinate representation of the LLG equation. For the case of |ζ |S = 103,
the cut-off angle inducing the pole switching will be θ = 0.999 36 π , ensuring an accurate
study of magnetization dynamics except for the detailed analysis of magnetization reversal.
The highest threshold value displayed, |ζ |S = 108, is characterized with a cut-off angle equal
to 0.999 999 9936 π , allowing us to study macrospin behaviour without the need to switch the
projector pole. Even at such high values of |ζ |S , the results obtained feature a perfect fitting to
the test specimen of the spherical coordinate representation of LLG, proving extremely good
accuracy of the stereographic projection representation.

The black curve in figure 4 represents the calculation time for the Cartesian form of the
LLG equation (6), featuring 5.9 times performance increase in comparison with the spherical
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Figure 4. Comparison of calculation performance for the Cartesian (solid black line) and
stereographic (squares) representations of the LLG equation as a function of the threshold value
|ζ |S after overcoming which the projector pole of the system was switched to the opposite one.
The calculation time for the spherical representation of the LLG corresponds to 100%.

Figure 5. Distribution of vector length prior to renormalization for the case of Cartesian
representation of the LLG equation, calculated for the different integration steps hint and
temperatures T.

coordinate representation. As was mentioned before, the Cartesian form does not conserve
the length of the magnetization vector, therefore it was renormalized at each step to the value
of unity. To justify the relevancy of renormalization, we studied the dispersion of | �m| prior
to the renormalization procedure for different values of the integration step and temperatures
(figure 5), introduced via Langevin noise [18–20]. The random numbers describing the
stochastic Wiener process were generated with the Ziggurat method [21].

As one can see from the figure, at T → 0 the length of the magnetization vector is strictly
limited to a direct vicinity of | �m| = 1, suggesting that renormalization does not introduce
any significant changes into the behaviour of the system. Naturally, for larger values of the
integration step (hint = 1 ps) the peaks of the | �m| distribution become wider, leading to a
significant dispersion already for T = 10 K. For the case of room temperatures, the tails
of | �m| expand beyond the interval [0.999 − 1.001], jeopardizing the calculations without
renormalization applied at each integration step. Nevertheless, the performed comparisons
have shown that a renormalized Cartesian model will yield practically identical results to those
obtained with the reference spherical coordinate representation. However, if one is aiming
to achieve unconditional preservation of the magnetization vector length together with a
significant increase of numerical performance, then the stereographic projection is definitely
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a strong candidate for such a purpose, also offering a compact graphical representation of the
three-dimensional dynamics on a complex plane.

3. Conclusions

It was shown that the use of the stereographic projection for the numerical simulations of
magnetization dynamics allows us to benefit from trigonometry-free equations (ensuring
fast calculations) and unconditional preservation of the magnetization vector length. The
performed benchmarking revealed an impressive decrease of calculation time by a factor of 5
in comparison with the spherical coordinate representation of the system, which was considered
as a control sample. This optimization is extremely important in the case of multiple-spin
system simulations. In addition, the use of stereographic projection offers easy-to-interpret
rendition of a phase portrait as a simple two-dimensional plot. The projection from both the
North and South poles can easily be juxtaposed, giving the complete picture of magnetization
dynamics in a single figure.

Moreover, similar techniques can be successfully applied to the study of general quantum
many-spin systems, using a coherent-state representation.
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Appendix A

In this Appendix, we list some formulae and results which are useful when using the
stereographic projection transformation.

The projection from the South pole of the unit sphere to the equatorial plane, with complex
coordinate ζ , according to figures 1(a) and (b), is defined by

ζ = sin θ

1 + cos θ
eiϕ = tan

θ

2
eiϕ. (A.1)

The metric induced from the sphere into the equatorial plane is given by

d�s2 = dθ2 + sin2 θ dϕ2 = 4|dζ |2
(1 + |ζ |2)2

. (A.2)

This mapping is conformal, i.e. preserves the angles between any two directions and their
images at a given point.

The area (solid angle) on the equatorial plane is

d = sin θdθ dϕ = 4 dζR dζI

(1 + |ζ |2)2
, (A.3)

where ζR and ζI are the real and imaginary parts of ζ .
The three-dimensional unit vector �m = �r/r = (ζ ∗ + ζ, i(ζ ∗ − ζ ), 1 − ζ ∗ζ ) /(1 + ζ ∗ζ )

can easily be recovered from the complex variable ζ using

�m = �† �σ�

�†�
, (A.4)
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Figure A1. Fixed [x, y, z] and rotated [b0, bx, by ] bases.

where �(ζ) = (
1
ζ

)
is a two-dimensional spinor with the first component equal to 1 and �σ

are the Pauli matrices. Equation (A.4) is also valid for a general spinor �(ζ) = (
ζ0
ζ1

)
having

the complex coordinate variable ζ as the homogeneous coordinate of projective geometry,
i.e. ζ1

ζ0
= ζ . Under rotations, the complex variable ζ transforms according to the Möbius or

fractional linear transformation homomorphic to the two-dimensional unitary transformation
of the spinors. This is a geometric and probably the most straightforward manner to introduce
spinors 1

2 and to relate them to the usual three-dimensional vectors [22].
Similarly to the usual spherical coordinate system, with variables r, θ, ϕ, and basis vectors

given by �er = ∂ �r
∂r

, �eθ = 1
r

∂ �r
∂θ

, �eϕ = 1
r sin θ

∂ �r
∂ϕ

, one can introduce the set of coordinates defined

by r and ζ, ζ ∗, considered as independent variables. The associated vectors are �m = �b0 = �r
r

and the vectors �b± defined by

(1 + ζ ∗ζ )
∂ �m
∂ζ

= 2�b−, (1 + ζ ∗ζ )
∂ �m
∂ζ ∗ = 2�b+. (A.5)

They are given by

(�b0 �b+ �b−) = (�ez �e+ �e−)

1 + ζ ∗ζ

⎛
⎝1 − ζ ∗ζ −ζ −ζ ∗

2ζ ∗ 1 −(ζ ∗)2

2ζ −ζ 2 1

⎞
⎠ , (A.6)

where �e± = 1
2 (�ex ± i�ey). Figure A1 illustrates the rotated basis in terms of the vectors �b0, �bx

and �by , connected with �b± in the same manner as the original basis vectors �ex, �ey and �e±.
Vectors �b± are obtained from �e± after the rotation by angle θ around the axis

(sin ϕ,− cos ϕ, 0), converting the vector �ez into �b0. This action also transforms the spin
state |J, J > into the coherent spin state |ζ > [14, 23, 24].

The new basis vectors are normalized

�b2
0 = 1, �b+ · �b− = 1

2 , �b2
± = 0, �b0 · �b± = 0 (A.7)

and properly oriented, so that

�b± × �b0 = ± i�b±, �b− × �b+ = i

2
�b0. (A.8)

8
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The variation of these vectors obeys

(1 + ζ ∗ζ )
∂

∂ζ

⎛
⎜⎝

�b0

�b+

�b−

⎞
⎟⎠ =

⎛
⎜⎝

2�b−
−�b0 + ζ ∗ �b+

−ζ ∗ �b−

⎞
⎟⎠

= i(ζ ∗ �b0 + 2�b−) ×

⎛
⎜⎝

�b0

�b+

�b−

⎞
⎟⎠ . (A.9)

For the sake of completeness, we summarize below some useful properties (collected
from the literature or derived by the authors) for the stereographic coordinate representation.
We hope this information will be useful for further research work in this field.

The differential of a point in space is given by

d�r = �b0 dr + �b−
2r

1 + ζ ∗ζ
dζ + �b+

2r

1 + ζ ∗ζ
dζ ∗, (A.10)

from which follows the metric on the equatorial plane, induced from the sphere, of
equation (A.2). The gradient of a function is then given by

∇V = ∂V

∂r
�b0 +

1 + ζ ∗ζ
r

∂V

∂ζ
�b+ +

1 + ζ ∗ζ
r

∂V

∂ζ ∗
�b−, (A.11)

which can also be verified using the identity

sin θ
∂

∂θ
− i

∂

∂ϕ
= 2ζ

∂

∂ζ
. (A.12)

Similarly, the differential operations as divergence, Laplace operator and curl are given by

∇ · �A = 1

r2

∂r2Ar

∂r
+

(1 + ζ ∗ζ )2

2r

[
∂

∂ζ

(
A+

1 + ζ ∗ζ

)
+

∂

∂ζ ∗

(
A−

1 + ζ ∗ζ

)]

∇2V = 1

r2

∂

∂r

(
r2 ∂V

∂r

)
+

(1 + ζ ∗ζ )2

r2

∂2V

∂ζ∂ζ ∗

(A.13)

∇ × �A = i

r2
(1 + |ζ |2)2

∣∣∣∣∣∣∣∣

�b0
r

1+|ζ |2 �b+
r

1+|ζ |2 �b−
∂
∂r

∂
∂ζ ∗

∂
∂ζ

Ar
r

1+|ζ |2 A+
r

1+|ζ |2 A−

∣∣∣∣∣∣∣∣
. (A.14)

The angular momentum operators �̂L = �̂r × �̂p become

L̂+ = ∂

∂ζ ∗ + ζ 2 ∂

∂ζ

L̂− = − ∂

∂ζ
− (ζ ∗)2 ∂

∂ζ ∗ (A.15)

L̂z = ζ
∂

∂ζ
− ζ ∗ ∂

∂ζ ∗

and the expression for operator L̂2 is

L̂2 = −(1 + ζ ∗ζ )2 ∂2

∂ζ ∗∂ζ
. (A.16)

9
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The extreme angular momentum spherical harmonics are expressed as

φL
L = (−1)L

√
2L + 1

4π

√
(2L)!

L!

ζL

(1 + ζ ∗ζ )L

φL
−L =

√
2L + 1

4π

√
(2L)!

L!

(ζ ∗)L

(1 + ζ ∗ζ )L

(A.17)

from which the others can be obtained using the raising and lowering operators L̂±.

Finally, the classical equation of motion

d �m
dt

= − �m × �H (A.18)

becomes

i
2

1 + ζ ∗ζ
dζ

dt
= Hs+

− i
2

1 + ζ ∗ζ
dζ ∗

dt
= Hs−,

(A.19)

where Hs± = 2�b± · �H are the spherical components of vector �H = H+ �b− + H− �b+ + H0 �b0 in
the rotated basis. Further on, if magnetic field �H is obtained from a potential as �H = − ∂H

∂ �m ,
equations (A.19) transform into

i
2

(1 + ζ ∗ζ )2

dζ

dt
= − ∂H

∂ζ ∗

− i
2

(1 + ζ ∗ζ )2

dζ ∗

dt
= −∂H

∂ζ
.

(A.20)

Alternatively, these equations can be rewritten as [15, 25]

dζ(t)

dt
= {ζ(t),Hc}PB

dζ ∗(t)
dt

= {ζ ∗(t),Hc}PB,

(A.21)

where Hc is the classical Hamiltonian appropriate for the problem under consideration, and
the Poisson bracket is given by

{A,B}PB = i

2Jh̄
(1 + ζ ∗ζ )2

(
∂A

∂ζ ∗
∂B

∂ζ
− ∂A

∂ζ

∂B

∂ζ ∗

)

= 1

Jh̄ sin θ

(
∂A

∂θ

∂B

∂ϕ
− ∂A

∂ϕ

∂B

∂θ

)
. (A.22)

Similar expressions can be obtained by projecting phase point onto stereographic plane from
the North pole instead. The new complex variable is ζ ′ = 1

ζ ∗ . Vector �m = �r/r is expressed

as �m = (ζ ′∗ + ζ ′, i(ζ ′∗ − ζ ′),−(1 − ζ ′∗ζ ′))/(1 + ζ ′∗ζ ′). Vectors �b± are defined as �b− =
(�e− − (ζ ′∗)2 �e+ + ζ ′∗ �e0)/(1 + ζ ′∗ζ ′), �b+ = �b∗

− and a vector �b0 = − �m is defined to preserve the
orientation of the basis given in equation (A.8), besides (A.7).
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