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Abstract
We diagonalize Q-operators for rational homogeneous (2)sl -invariant Hei-
senberg spin chains using the algebraic Bethe ansatz. After deriving the fun-
damental commutation relations relevant for this case from the Yang–Baxter
equation we demonstrate that the Q-operators act diagonally on the Bethe
vectors if the Bethe equations are satisfied. In this way we provide a direct
proof that the eigenvalues of the Q-operators studied here are given by Bax-
terʼs Q-functions.

Keywords: Bethe ansatz, Q-operator, quantum spin chain

1. Introduction

Integrable spin chains are prominent examples of integrable models. The solution of the
Heisenberg XXX 1

2
spin chain goes back to Bethe [1]. His ansatz of factorized plane wave

scattering is today known as the coordinate Bethe ansatz and is probably the most intuitive
way to solve the eigenvalue problem. However, the origin of the integrable structure remains
unclear.

The situation is somehow different when studying integrable models using the quantum
inverse scattering method which, in particular, provides a prescription of constructing com-
muting families of operators. Combined with the algebraic Bethe ansatz, that allows to
determine the wave function for models with a suitable reference state, it yields a powerful
tool to diagonalize integrable Hamiltonians along with the commuting family of operators,
see e.g. [2].
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Q-operators are distinguished members of the family of commuting operators. Their
eigenvalues, so-called Baxterʼs Q-functions, are in general given by polynomials with zeros at
the Bethe roots [3]. They are of fundamental importance for the so-called fermionic basis, see
e.g. [4], as well as in the ODE/IM correspondence [5]. Furthermore, the spectral problem of
planar 4 = super Yang–Mills theory in four dimensions, which is believed to be exactly
solvable in the planar limit [6], resulted in a set of relations among Q-functions, see [7] and
references therein. These all-loop equations are the same as for the spin chain, a close cousin
of the Heisenberg chain studied here, that appears in the spectral problem at one-loop level.
Initially Q-operators were introduced by Baxter to solve the eight-vertex model without
specifying a reference state [3]. However, the limit to the rational case is singular.

Inspired by [8], Q-operators were built in the framework of the quantum inverse scat-
tering method for finite-dimensional rational spin chains in [9–11]. The construction naturally
incorporates a magnetic field ϕ that manifests itself as a diagonal twist in the transfer
matrices, see also [12]. The twist field lifts the usual degeneracy in the spectrum and allows in
the case of (2)sl for the definition of two Q-operators Q± which belong to the commuting
family of operators. A main ingredient in the construction [9–11] are certain factorization
formulas that relate the Q-operators to transfer matrices and yield the quantum Wronskian on
an operatorial level. Having derived the quantum Wronskian and in particular the QQ-
relations on the operatorial level it was argued that the eigenvalues of the constructed Q-
operators are indeed the Q-functions, see section 3.5 in [9]. Furthermore, it was shown in [13]
how local charges can be obtained from the Q-operators. For a discussion of Q-operators for
supersymmetric spin chains relevant in the spectral problem, see [14–16].

In the following, we diagonalize the Q-operators of the Heisenberg XXXs spin chain
introduced in [9, 11] directly using the algebraic Bethe ansatz. In analogy to the algebraic
Bethe ansatz for the corresponding transfer matrix we define the off-shell Bethe vectors as the
m-fold excitations on the tensor product of highest or lowest weight states. In order to
evaluate the action of the Q-operators on the off-shell Bethe vectors we derive certain fun-
damental commutation relations from the Yang–Baxter equation. We show that the Q-
operators act diagonally on the Bethe vectors

y Q yQ ( ) ( ) , (1.1)m mψ ψ=±
±

±
±

with the spectral parameter y and Baxterʼs Q-functions

( )Q y y z( ) e , (1.2)y

j

m

j
i

1

∏= −ϕ
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z z
e
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1
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k j
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k j
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2i

1
∏+

−
=

− +
− −

ϕ
±

±
±

=
≠

± ±

± ±

This pragmatic approach motivates the choice of Lax operators used to construct the Q-
operators, avoids the detour of deriving the functional relations from the factorization
formulas and provides a transparent derivation of the eigenvalues of the Q-operators along
with the corresponding eigenvectors.

This article is organized as follows: in section 2 we provide a short review of the Q-
operator construction as presented in [9, 11]. The elementary solutions used to construct the
Q-operators satisfy certain Yang–Baxter relations. This is discussed in section 3. In particular,
the Yang–Baxter equation relevant to derive the fundamental commutation relations in
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section 4 is derived. Section 5 contains the algebraic Bethe ansatz for one of the Q-operators
of the Heisenberg XXXs spin chain. We show that the Q-operator Q+ acts diagonally on the
Bethe states if the Bethe equations are satisfied. Finally, we use a relation between the Q-
operators to obtain the eigenvalues and eigenfunctions of Q−. Further material is collected in
the appendices.

2. Q-operators for the Heisenberg spin chain

In this section we construct the Q-operators for the Heisenberg XXXs spin chain following
[9, 11]. The elementary Lax operators used to construct Q-operators of the twisted Heisenberg
spin chain can conveniently be written as

y y( ) e ( ) e , (2.1)s
S Sa a

,
¯ 0 =± ±

−∓ ±

with the oscillator algebra and the (2)sl generators obeying the commutation relations

S S S S S Sa a[ , ¯] 1, , 2 , , . (2.2)3 3= = = ±+ − ± ±⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
The diagonal part y( )0± depends on the spectral parameter y and reads

( )
y

y S

y s
( )

( )
. (2.3)0 3 Γ

Γ
=

∓
−±

Here we have chosen a suitable normalization for highest/lowest weight representations, i.e.
for

S S s0, , (2.4)3ω ω ω= = ±±
± ± ±

we have y( )0 ω ω∣ 〉 = ∣ 〉±
± ± . This normalization ensures that all entries of the Q-operators

will be polynomials in the spectral parameter when considering finite-dimensional
representations s , 1, ,1

2

3

2
= … up to an overall factor, see below. The Lax operators (2.1)

are also employed in the so-called DST-chain, see e.g. [17]. However, here the role of the
auxiliary and quantum space is interchanged. The auxiliary space of the monodromy of the Q-
operators for rational spin chains is built from the product in the oscillator space and from the
N-fold tensor product in the (2)sl space

y y y yM ( ) ( ) ( ) ( ) . (2.5)s s s

N

, , ,  
  

= ⊗ ⊗ ⋯ ⊗± ± ± ±

Here we used⊗ to denote the tensor product in the first space and multiplication in the second
space of s, ±. Following [9, 11], we define the Q-operators as the regulated trace of the
monodromy (2.5)

y Z yQ M( ) e tr e ( ) , (2.6)y aai 1 2i ¯= ϕ ϕ
±

±
±
− ∓

±
⎡⎣ ⎤⎦

where the trace sums over all states in the Hilbert space and we introduced the normalization

Z tr e
1

1 e
. (2.7)aa2i ¯

2i
= =

−
ϕ

ϕ±
∓

∓
⎡⎣ ⎤⎦

The parameter ϕ is the twist angle and manifests itself as a diagonal twist in the transfer
matrices. It is known that such diagonal twisted boundary conditions break the (2)sl
symmetry but the quantum number m is still well defined. As a consequence, not only highest
weight states but also all decendents can be obtained from the Bethe ansatz.
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3. Yang–Baxter relations

The fundamental relation underlying the quantum inverse scattering method and the algebraic
Bethe ansatz for rational spin chains is the Yang–Baxter equation. It reads

R x y R x R y R y R x R x y( ) ( ) ( ) ( ) ( ) ( ), (3.1)1,2 1,3 2,3 2,3 1,3 1,2− = −

and is defined on the tensor product of three vector spaces V V V1 2 3⊗ ⊗ . Here the R-matrix
Ri j, acts trivially as the identity on Vk with k i j,≠ and non-trivially on V Vi j⊗ . For further
references we refer the reader to the excellent introduction [2].

The Lax operators  relevant to construct the transfer matrix of the Heisenberg chain
with the fundamental representation in the auxiliary space satisfy the RTT-relation which
serves as a defining relation of the Yangian, see e.g. [18]. Namely, it holds that

x y x y y x x yR R( ) ( ) ( ) ( ) ( ) ( ). (3.2)s s s s, , , , , ,   − = −□ □ □ □ □ □ □ □

Here the fundamental R-matrix reads

x

x
x

x
x

R ( )

1 0 0 0
0 1 0
0 1 0
0 0 0 1

, (3.3), =
+

+
□ □

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

and acts trivially on the third space denoted by s in (3.2). The (2)sl -invariant Lax operator can
be written as

y
y S S

S y S
( )

1
1

, (3.4)s,
3

3
 =

+ +
+ −□

−

+

⎛
⎝⎜

⎞
⎠⎟

with the generators of (2)sl defined in (2.2). Here, the shift in the spectral parameter has been
introduced for convenience. Its role will become clear later on. Before presenting the Yang–
Baxter equation that is relevant to derive the fundamental commutation relations necessary to
diagonalize the Q-operators in (2.6) we recall the derivation of the Lax operators s, ± (2.1)
employed in the construction [9, 11]. Apart from the solutions that are classified by the
Yangian, the RTT-relation allows for solutions where the dependence on the spectral
parameter is not proportional to the diagonal, see [10] as well as [19] where these solutions
were studied in the context of Drinfeldʼs second realization. In particular, it holds that

x y L x L y L y L x x yR R( ) ( ) ( ) ( ) ( ) ( ), (3.5), , , , , ,− = −□ □ □ ± □ ± □ ± □ ± □ □

with

( ) ( )L z
z

L z
za

a aa
aa a

a
( ) 1

¯ ¯
and ( ) ¯ ¯

1
. (3.6), ,= −

− = −
−□ + □ −

These solutions where used for the Q-operator construction in [9]. Furthermore, they are
relevant to obtain the Lax operators for Q-operators for arbitrary representations of (2)sl in
the quantum space in [11], see also [15]. Another ingredient is the (2)sl -invariant Lax
operator for the transfer matrix of rational spin chains (3.4). The relevant Yang–Baxter
relation that defines the Lax operators s, ± in (2.1) reads

x y L x y y L x x y( ) ( ) ( ) ( ) ( ) ( ). (3.7)s s s s, , , , , ,   − = −□ □ ± ± ± □ ± □

We note that for spin 1

2
we identify z L z( ) ( ),

1

2 ,1
2

 + =± □ ± . However, this relation is not
suitable for our purposes.

To obtain the fundamental commutation relations that are needed to diagonalize Q-
operators we define the Lax operator
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z
z S S

S z S
( ) . (3.8)s,

3

3
 =

+
−□

−

+

⎛
⎝⎜

⎞
⎠⎟

It satisfies the unitarity relation

x y y x y x x y
c

( ) ( ) ( )( 1)
2

, (3.9)s s, , − − = − − − +□ □

where c is the Casimir element of (2)sl given by c S S S S S S2 3 3= + ++ − − + . We note that
the Lax operator (3.8) satisfying (3.9) only differs by a shift in the spectral parameter from the
Lax operator defined in (3.4). This is not always the case and for convenience we distinguish
between the two solutions (3.4) and (3.8). In addition to the Lax operators L ,□ ± in (3.6) we
define

L z z L z
z

aa a
a

a
a aa

( ) 1 ¯
¯ 1

and ( ) 1 ¯
1 ¯

,

(3.10)

, ,= + + −
−

= −
− + ++ □ − □⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

that obey the unitarity conditions

L x y L y x x y L x y L y x x y( ) ( ) , ( ) ( ) . (3.11), , , ,− − = − − − = −+ □ □ + − □ □ −

In contrast to the Lax operators  these solutions significantly differ from (3.6). The Yang–
Baxter equation relevant to derive the sought-after fundamental commutation relations can
then be obtained from (3.7) after multiplying (3.8) and (3.10). We find

y x L x y L x y x y( ) ( ) ( ) ( ) ( ) ( ), (3.12)s s s s, , , , , ,   − = −± □ ± □ ± □ □ ±

where we used the unitarity relations (3.9) and (3.11) and for convenience renamed the
spectral parameters.

4. Fundamental commutation relations

Following the algebraic Bethe ansatz we define the monodromy of the fundamental transfer
matrix 1 as the matrix product of the Lax operators introduced in (3.8) in the two dimensional
auxiliary space and the N-fold tensor product in the quantum space2 labelled by the repre-
sentation label s. Using the same conventions as in the definition of the monodromy of the Q-
operators (2.5) it can be written as

y y y y( ) ( ) ( ) ( ). (4.1)s s s, , ,   = ⊗ ⊗ ⋯ ⊗□ □ □

By construction  is a 2 2× matrix in the auxiliary space with operatorial entries built from
the (2)sl generators at the different sites

y
A y B y
C y D y

( )
( ) ( )
( ) ( )

. (4.2) =
⎛
⎝⎜

⎞
⎠⎟

The corresponding transfer matrix is constructed as the trace over the two-dimensional
auxiliary space containing a suitable boundary twist

1 In contrast to the convention often found in the literature where the fundamental transfer matrix refers to the
transfer matrix of equal representation in quantum and auxiliary space.
2 Note that the monodromy in (4.1) is related to one built from the Lax operator in (3.4) by a shift in the spectral
parameter, cf (3.8).
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y y A y D yT ( ) tr e ( ) e ( ) e ( ). (4.3)S2i i i3= = +ϕ ϕ ϕ
□

− − +

Here the boundary twist, and hence the generator S3, acts trivially in the quantum space and
non-trivially in the auxiliary space. As a consequence of the Yang–Baxter relation (3.2) and
the unitarity relation (3.9) the monodromy  in (4.1) satisfies the RTT-relation

x y x y y x x yR R( )( ( ))( ( ) ) ( ( ) )( ( )) ( ), (4.4), ,   − ⊗ ⊗ = ⊗ ⊗ −□ □ □ □   

where  denotes the 2 2× identity matrix. To obtain the fundamental commutation relations
we insert the explicit form of the R-matrix R ,□ □ as given in (3.3) into (4.4), see e.g. [2, 20]. In
particular, we find

B x B y B y B x( ) ( ) ( ) ( ), (4.5)=

A x B y f y x B y A x g y x B x A y( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( ), (4.6)= −

D x B y f x y B y D x g x y B x D y( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( ), (4.7)= −

C x B y B y C x g x y A y D x A x D y( ) ( ) ( ) ( ) ( , )[ ( ) ( ) ( ) ( )]. (4.8)= + −
Here we used the notation

f x y
x y

x y
g x y

x y
( , )

1
and ( , )

1
, (4.9)= + −

−
=

−
with f x y g x y( , ) ( , ) 1= + .

To diagonalize the Q-operators in (2.6) we derive the commutation relations of the Q-
operatorʼs monodromy M± with the operators A, B, C and D in (4.2). As a consequence of
the Yang–Baxter relation (3.12), we find that the monodromy of the Q-operators (2.5) and the
monodromy of the fundamental transfer matrix (4.1) satisfy

y x L x y L x y x yM M( ) ( ) ( ) ( ) ( ) ( ). (4.10), , − = −± ± □ ± □ ±

This relation is the analog of the RTT-relation (4.4), but here we exchanged one of the
fundamental spaces with an oscillator space denoted by ‘□’ and ‘ ± ’, respectively. In the
following we focus on the Q-operator Q+ built from the monodromy M+. In this case the
additional fundamental commutation relations necessary to diagonalize the Q-operator Q+
arise from (4.10) after inserting the explicit form of L ,+ □ and  as given in (3.10) and (4.2).
We obtain certain exchange relations of the elements of the monodromy  similar to (4.5)–
(4.8), though this time with the monodromy of the Q-operator M+

( )
( )

y x y A x B x

A x x y C x y

M aa a

aa a M

( ) 1 ¯ ( ) ¯ ( )

( ) 1 ¯ ( ) ( ), (4.11)

− + + +

= − + + −
+

+

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
( )y B x B x y x y D x y y A xM aa M a M M a( ) ( ) ( ) 1 ¯ ( ) ( ) ( ) ( ) ( ), (4.12)= − − − + −+ + + +

( )C x y y y x C x A x y y D xM M aa a M M a( ) ( ) ( ) 1 ¯ ( ) ( ) ¯ ( ) ( ) ¯ ( ), (4.13)= − − − + −+ + + +

D x y B x y y C xM a M M a( ), ( ) ( ) ¯ ( ) ( ) ( ). (4.14)= ++ + +⎡⎣ ⎤⎦
For our purposes it is enough to consider (4.12) and (4.14) and combine them into the relation

y B x y x B x y X y xM M( ) ( ) ( ) ( ) ( ) ( , ), (4.15)= − ++ +

with

X y x y D x y C x y A xa M a M a M a( , ) ( ) ( ) ( ) ( ) ( ) ( ). (4.16)= + −+ + +
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The relations relevant to diagonalize Q− involving M− and L ,− □ can be found in appendix A.
Similar relations appeared previously for the product of two Q-operators in [12].

5. From Q-operators to Q-functions

In this section we diagonalize the Q-operator Q+ following the algebraic Bethe ansatz. In
addition to the fundamental commutation relations (4.5)–(4.8) we will repeatedly use the
commutation relation among the monodromy M+ and the B-operators (4.15) that we obtained
from the Yang–Baxter equation (4.10).

Following [2], we introduce the reference state

, (5.1)

N

  
Ω ω ω= ⊗ ⋯ ⊗+ + +

with the highest weight state at each site as defined in (2.4). The action of the monodromy
(4.1) on the reference state Ω∣ 〉+ yields in particular

A y y D y y C y( ) ( ) , ( ) ( ) , ( ) 0,

(5.2)

Ω α Ω Ω δ Ω Ω= = =+ + + + +

with

y y s y y s( ) ( ) , ( ) ( ) . (5.3)N Nα δ= + = −
Due to our choice of normalization of the operators ± in (2.3) the action of the monodromy
(2.5) of the Q-operator Q+ on the reference state Ω∣ 〉+ is independent of the spectral parameter
y and reads

yM ( ) e , (5.4)Sā totΩ Ω=+
+ +−

where S S
i

N itot
1

( )∑=− = − with S i( )
− denoting the generator S− acting on site i. The off-shell

Bethe sates in the context of the algebraic Bethe ansatz are then defined as

( ) ( ) ( )B z B z B z . (5.5)m m1 2ψ Ω= ⋯+ + + + +

The states mψ∣ 〉+ are eigenstates of the corresponding transfer matrix if the parameters zi satisfy
the Bethe equations [2]. Thus we expect that the Q-operators Q± also act diagonally as they
belong to the family of commuting operators3 and obey the Baxter equation, see [9].

Instead of studying the action of the Q-operator on the off-shell Bethe states (5.5) it is
convenient to act with the monodromy and take the trace afterwards. Using the fundamental
commutation relations in (4.15) we obtain

( ) ( ) { }y y z B z y y zM M( ) ( ) , , (5.6)m
i

m

i i
1

∏ψ Ω= − ++
+

=

+ +
+

+ +

where

( ) ( ) ( ) ( ) ( ) ( ){ }y z y z B z B z X y z B z B z, , . (5.7)
k

m

i

k

i k k k m
1 1

1

1 1 1∑∏ Ω= − ⋯ ⋯+

= =

−
+ +

−
+ +

+
+ + +

3 From (4.10) it follows that y yT Q[ ( ), ( )] 0′ =□ ± using the relation L y[e , ( )] 0S aa2i ( ¯ )
,

3 =ϕ− ±
± □ and the cyclicity of

the trace, cf (2.6) and (4.3).
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Here, the operator X is defined in (4.16) and z{ }+ denotes the set of parameters z z, , m1 …+ +.
The role of the terms on the right-hand-side of (5.6) becomes clear after we have taken the
trace over the auxiliary space and using the action of the monodromy M+ on the reference
state (5.4). From the definition of the Q-operators (2.6) we find that

( ) { }y y z y zQ ( ) e , , (5.8)m
y

i

m

i m
i

1

∏ψ ψ= − +ϕ
ϕ+

+ +

=

+ + +

with

{ } { }y z Z y z, e tr e , . (5.9)y aai 1 2i ¯=
ϕ

ϕ ϕ+ +
+
− − +⎡⎣ ⎤⎦

The term proportional to mψ∣ 〉+ yields the Q-function Q+ if the parameters zi
+ are Bethe roots,

see (1.2). Thus, we expect that the unwanted terms y z, { }∣ 〉ϕ
+ vanish if the parameters zi

+

satisfy the Bethe equations (1.3).
From the commutation relations among the B-operators (4.5) it is obvious that the left-

hand side of (5.6) is symmetric in the parameters zi as well as the first term on the right-hand-
side. As a consequence also y z, { }∣ 〉+ and y z, { }∣ 〉ϕ

+ given in (5.7) and (5.9) must be invariant
under permutations of zi

+. This property will be important later.
The evaluation of the unwanted terms (5.9) is more involved than in the algebraic Bethe

ansatz for the corresponding transfer matrix. The reason is that while the operators A and D
conserve the number of B-operators, the operators M+ and C can annihilate one B-operator,
see (4.6)–(4.8) and (4.15). After we have commuted all operators A, D,C and M+ through the
B-operators and evaluating them on the reference state as discussed (5.2) and (5.4) the
unwanted terms in (5.9) can be written as

( )
( ) ( ) ( ){ }y z

y z z
B z B z S, e

, , ,

e 1
.

(5.10)

y

k

m
k m

k k m
ki

1

(1) ( )

2i
( 1) ( ) tot

m




∑ ∑ Ω=
…

−
⋯

ϕ
ϕ

σ

ϕ
σ σ

ϕ
σ σ

+ +

∈ =

+ +

+
+ + +

Here we moved the oscillators multiplied to the left of the monodromy M+ to the right by
commuting them through the regulator e aa2i ¯ϕ− and subsequently using the cyclicity of the
trace. Finally, we can take the trace of M+ on the reference state

( )
y

Z
SM atr e ( )

e 1
. (5.11)k

k
kaa2i ¯

2i
totΩ Ω=

−
ϕ

ϕ

−
+

+ + +

Assuming that the states corresponding to different families z{ }+ are linearly indepen-
dent, see also the discussion in [20], we demand that all coefficients in (5.10) vanish

( )y z z, , , 0, (5.12)k m(1) ( ) … =ϕ
σ σ
+ +

for all permutations mσ ∈ . In section 5.1 we evaluate 1 ϕ for which the condition (5.12)
yields the Bethe equations (1.3) and in section 5.2 we show that all other k ϕ with k 1>
vanish if the Bethe equations are satisfied.

There exist exceptional solutions to the Bethe equations which in particular include
coinciding Bethe roots or so called exact string solutions which may yield null vectors or
singular solutions, see e.g. [21, 22] and references therein. To some extent the situation is
more feasable in the case of twisted boundary conditions. However, in the following we focus
on the generic case where z zi j≠+ + and z z 1i j− ≠ ±+ + .
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5.1. Bethe equations: the first term

Having in mind that the unwanted terms in (5.7) are symmetric in the parameters zi
+ we

calculate the first term 1 ϕ employing an argument similar to the one used to obtain the
unwanted terms for the corresponding spin chain transfer matrix, see [2, 20]. Let us consider
an ordering of the parameters zi

+ as in (5.7) and focus on the first term in the sum where k = 1.
In particular, all unwanted terms (5.10) that are independent of B z( )1

+ must arise from it after
taking the trace! We denote the equality of the part independent of B z( )1

+ as ≃ such that

( ) ( ){ }y z X y z I I B z, , with , (5.13)
k I

k1 ∏ Ω≃ =+ +

∈

+

as discussed above. Here the set I is given by I m{2, 3, , }= … .
Let us evaluate the action of the operators A, D and C on I∣ 〉 in X y z I( , )1 ∣ 〉+ , cf (4.16).

This can be done by repeatedly applying the fundamental commutation relations (4.6), (4.7)
and (4.15) and evaluate the relevant operators on the reference state (5.2). The action of the
operators A, D andC on I∣ 〉 is well-known, see e.g. [20], and can be found in (B.2)–(B.4). We
obtain

( )

( ) { }

{ }

( ) ( ) ( )
( )

( ) ( )

( )

( )

( )

{ }

{ }

X y z I z y z y I

z y I j

z z I j

z I j k

a M M a

a M a

a M M a

a M a

, ( ) ( )

( ) { }

1

, 1 . (5.14)

I I

j I
j
I

j I
j
I

j
I

j k I
j k

j k
I

1 1 1

1

1 1

,
, 1

 


 



∑

∑

∑

∪

∪

= −

+ ⧹

+ − ⧹

+ ⧹

+ +
+

+
+

∈

+
+

∈

+
+

+
+

∈
<

+
+

Here the caligraphic coefficients can be found in (B.5)–(B.8). As we can see, only the first
term can contribute to 1 ϕ as all others already contain less than m 1− B-operators. When
substituting I and I as given in (B.5) and (B.6) into (5.14) we obtain

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

z y z y I y z B z

z f z z y z f z z y

a M M a

aM M a

( ) ( )

, ( ) , ( ) .

(5.15)

I I

i

M

i i

i

M

i
i

M

i

1 1
2

1
2

1 1
2

1

  ∏

∏ ∏δ α Ω

− = −

× − + …

+
+

+
+

=

+ +

+

=

+ +
−

+

=

+ +
−

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

Here the dots denote terms that contribute to k ϕ with k 1> and as such contain less B-
operators. Finally, we evaluate the trace over the auxiliary oscillator space, cf (5.8) and (2.6),
on the reference state (5.11) and obtain

( ) ( )

( ) ( ) ( ) ( )

y z z y z

z f z z z f z z

, , , e

e , e , .

(5.16)

m
i

m

i

i

m

i
i

m

i

1 1
i

2

i
1

2
1

i
1

2
1

 ∏

∏ ∏δ α

… = −

× −

ϕ ϕ

ϕ ϕ

+ + +

=

+

+ +

=

+ + − +

=

+ +
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

We demand that the coefficients 1 ϕ vanish for all permutations of the parameters zi
+, cf

(5.12). This yields the Bethe equations
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( ) ( ) ( ) ( )Q z z Q z z k m1 1 0, for 1, , ,

(5.17)

k k k kα δ− + + = = …+
+ +

+
+ +

compare (1.3) and (5.3). Here we rewrote the product of functions f in (4.9) for z zi k≠+ + in
terms of Baxterʼs Q-function as given in (1.2).

5.2. Ravelled Bethe equations: recursion

Naturally, we expect that also the coefficients k ϕ with k 1> vanish if the Bethe equations are
satisfied. This is indeed the case. However, the coefficients are quite involved and we will not
present them here. In order to show that they vanish we again consider the first term in the
sum on the right-hand-side of (5.15) and isolate the part that does not depend on B z( )1

+ . As
B z( )1

+ appears on the right of the monodromy M+ in the last two terms of (5.14) we have to
keep these terms and evaluate them further using (5.6). We find

( )

( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( )

{ }

{ }

{ }

X y z I z y z y I

z y I j

z X y z z X y z I j

z X y z I j k

a M M a

a M a

a a

a a

, ( ) ( )

( )

, ,

, , , (5.18)

I I

j I
j
I

j I
j
I

j
I

j k I
j k

j k
I

1 1 1

1

1 1 1 1

,
, 1 1

 


 



∑

∑

∑

≃ −

+ ⧹

+ − ⧹

+ ⧹

+ +
+

+
+

∈

+
+

∈

+ + + +

∈
<

+ +

where we dropped the terms with B z( )1
+ on the left of the monodromy M+. From (5.18) and

(5.13) it becomes clear that the part which does not depend on B z( )1
+ of y z, { }∣ 〉+ can be

written as

( ) ( ){ } ( )y z X y z I
J I J

y z I JG, ,
1

! !
, , (5.19)( )

k

m

k k
J

I
k1

1
1

m

k

1
∑ ∑ σ≃ ≃

⧹
⧹

σ
σ

+ +

∈ =

+

−

where J k{2, , }k = … . The coefficients GJ
I

k
are symmetric in zi

+ for i I Jk∈ and z j
+ for

j Jk∈ and depend on the monodromy M+ and the oscillators a but not on the operators A, B,
C and D. They are determined in the following. Substituting (5.19) into (5.18) we obtain the
recursion relation

( )( ) ( ) ( ) ( ) ( )

( ) ( )

{ }
{ }

{ }
{ }

{ }
{ }

y z z y z z y z

z y z

G a G G a

a G a

, , ,

, , (5.20)

J
I

j

k

j
I

J j
I j

j
I

J j
I j

i j k
i j
I

J i j
I i j

1
2

1 1 1 1

2
, 1 ,

,
1

k k k

k

 



∑

∑

= −

+

+

=

+
⧹

⧹ + +
⧹

⧹ +

⩽ < ⩽

+
⧹

⧹ +

for all permutations of the elements m2, ,… with the initial conditions

( ) ( ) ( )y z z y z yG a M M a, ( ) ( ) , (5.21)I I I
1 1 1 = −∅
+ +

+
+

+

( ) ( ) ( ) ( ) ( ){ } { }y z z z y z z yG a M M a, ( ) ( ) . (5.22)i
I

i
I I i

i
I I i

{ } 1 1 1
2

1 1
2   = ++ + ⧹ +

+
+ ⧹ +

+

Note that in (5.22) we expressed j in terms of  and  using (B.7). The operators GJ
I

k
are

obtained recursively in appendix C. If we substitute  and  as given in (B.5) and (B.6) they
read
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( ) ( )

( ) ( )

( ) ( )y z z J g z z y z f z z

y z f z z

G a M

M a

, , ! , ( ) ,

( ) , .

(5.23)

J
I

I
i J

i
J

j J
j

l I J
j l

J

j J
j

l I J
l j

1 1
1

{1}

1

{1}

∏ ∏ ∏

∏ ∏

δ

α

=

−

∪

∪

+ +

∈

+ + +
+

∈

+

∈ ⧹

+ +

+
+

∈

+

∈ ⧹

+ +

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

In principle, one can evaluate the coefficients k ϕ by subsequently applying (5.19) and taking
the trace as in (5.9). However, this is not necessary! Taking the trace of (5.19) and moving all
oscillators to the right of the monodromy M+ yields

( )
( )

( ) ( )

{ }y z
g z z

m k Z
y z z z

y B z B zM a

,
e ,

( ) !
, , , ,

tr e ( ) , (5.24)

k

m y k
i

k
i

k m

k
k m

aa

1

i( )
2 ( ) 1

1 (2) ( )

2i ¯
( 1) ( )

m 1



∑ ∑

∏

Ω

≃
−

…

× ⋯

ϕ
σ

ϕ
σ ϕ

σ σ

ϕ
σ σ

+

∈ =

+
=

+ +

+

+ + +

−
+ +

+ + +

−

⎡⎣ ⎤⎦
with the coefficients

( ) ( )

( ) ( )

( )y z z z z f z z

z f z z

, , , , e ,

e , . (5.25)

k m
k

j

k

j
l k

m

j l

k

j

k

j
l k

m

l j

1 2
i

1 1

i

1 1

 ∏ ∏

∏ ∏

δ

α

… =

−

ϕ ϕ

ϕ

+ + + +

=

+

= +

+ +

−

=

+

= +

+ +

We note that up to a factor 1ϕ coincides with 1 ϕ and thus vanishes. To show that all k ϕ with
k 1> vanish we note that the Bethe equations (5.17) imply

( ) ( ) ( ) ( )z z z z z ze 1 e 1 0,

(5.26)

I

j I
j

l I
j l

I

j I
j

l I
j l

i

¯

i

¯
∏ ∏ ∏ ∏δ α− + − − − =ϕ ϕ+

∈

+

∈

+ + −

∈

+

∈

+ +

where we introduced the set I m{1, , }⊆ … of cardinality I∣ ∣ and its complement Ī . From
(5.26) it follows that

y z z z( , , , , ) 0. (5.27)k m1 (2) ( ) … =ϕ
σ σ

As a consequence all unwanted terms that are independent of B z( )1
+ vanish, cf (5.24).

We discussed earlier that the unwanted terms and in particular (5.7) are invariant under
permutations of the Bethe roots. Following the same strategy presented here for the case not
containing B z( )1

+ we can equally well evaluate the terms that do not contain B z( )2
+ , B z( )3

+ ,
etc. The corresponding coefficients kϕ are permutations of (5.25) involving z1

+ and thus
vanish due to (5.26). Finally, we conclude that in general the unwanted terms (5.10) vanish if
the Bethe equations (5.17) are satisfied.

6. The other Q

To diagonalize the Q-operator Q− we can in principle repeat the procedure explained in
section 5 using the commutation relations in appendix A. The natural choice of the reference
state is such that it is annihilated by the B-operator and excitations are created by acting with
C-operators, see below. However, for finite-dimensional representations we can make use of
the spin-flip symmetry of the Q-operators. First, we note that Lax operators s, ± can be
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related to each other by the transformation

K y K y( ) ( ), (6.1)s s,
1

, =±
−

∓

defined as

K S K S K S K S, . (6.2)1
3

1
3= = −±

−
∓

−

As a consequence of (6.1) and the definition of the Q-operators in (2.6) we see that Q± are
related through the transformation K acting on each site of the spin chain and a sign change of
the twist field ϕ

y y K K KKQ K Q K( ) ( ) with . (6.3)

N

1
  

= = ⊗ ⊗ ⋯ ⊗ϕ ϕ±
−

∓ → −

As shown in section 5 the Q-operator Q+ acts diagonally on the Bethe states mψ∣ 〉+ if the Bethe
equations (5.17) are satisfied. As a consequence of (6.3) we obtain the action of the Q-
operator Q− on the Bethe states

( ) ( )C z C z , (6.4)m m1ψ Ω= …− − − −

with Ω∣ 〉− = ω ω∣ ⊗ ⋯ ⊗ ∣ 〉− − = K Ω∣ 〉+ . The Q-operator Q− acts diagonally on the Bethe
states (6.4) as

( )y y zQ ( ) e , (6.5)m
y

k

m

k m
i

1

∏ψ ψ= −ϕ
−

− −

=

− −

if the Bethe roots zi
− satisfy the Bethe equations

( ) ( ) ( ) ( )Q z z Q z z1 1 0, (6.6)k k k kα δ− + + =−
− −

−
− −

with α and δ given in (5.3), cf (1.1)–(1.3). Here we used that the transformation K acts on the
quantum space of the monodromy  in (4.1) as

A y B y
C y D y

D y C y
B y A y

K K
( ) ( )
( ) ( )

( ) ( )
( ) ( )

. (6.7)1 =−
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

7. Conclusion

We diagonalized the Q-operators for the XXXs Heisenberg spin chain using the algebraic
Bethe ansatz. In doing so we demonstrate that the eigenvalues of the Q-operators are given by
Baxterʼs Q-functions. In analogy to the algebraic Bethe ansatz for the corresponding transfer
matrix, the results obtained rely on certain fundamental commutation relations that were
derived from the Yang–Baxter equation and the cancellation of the so-called unwanted terms.
Our findings consolidate the construction of the Q-operators as carried out in [9, 11]. Here the
functional form of the Q-operators has been deduced rather indirectly from their functional
relations.

We have seen that the commutation relations derived here are convenient to diagonalize
the Q-operators Q± on the states ψ∣ 〉± respectively as the eigenvalues are manifestly poly-
nomials. However, it is not apparent that the eigenvalue will be a polynomials when acting
with Q± on the states ψ∣ 〉∓ respectively. This yields a curious relation among the Bethe roots
as presented in appendix E, see also [12, 23]. It may be worth to study these relations in the
zero twist limit and in particular at half-filling.
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Furthermore, it would be interesting to generalize our procedure to the case of
n( )sl -invariant spin chains and their supersymmetric relatives [10, 11, 14] where the nested

Bethe ansatz has to be applied.
Finally, we hope that our proof carries over to the q-deformed case where a similar

procedure has been studied in [24].
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Appendix A. Fundamental commutation relations for Q−

The fundamental commutation relations arising from the Yang–Baxter equation (4.10) for the
Q-operator Q− read

( ) ( )
(A.1)

y x y D x C x D x x y B x yM aa a aa a M( ) 1 ¯ ( ) ¯ ( ) ( ) 1 ¯ ( ) ( ),− + + + = − + + −− −⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

( )y C x C x y x y A x y y D xM aa M a M M a( ) ( ) ( ) 1 ¯ ( ) ( ) ( ) ( ) ( ), (A.2)= − − − + −− − − −

( )B x y y y x B x D x y y A xM M aa a M M a( ) ( ) ( ) 1 ¯ ( ) ( ) ¯ ( ) ( ) ¯ ( ), (A.3)= − − − + −− − − −

[ ]A x y C x y y B xM a M M a( ), ( ) ( ) ¯ ( ) ( ) ( ). (A.4)= +− − −

Combining (A.2) and (A.4) yields

(A.5)y C x y x C x y y A x y B x y D xM M aM aM a M a( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).= − + + −− − − − −

Appendix B. Commutation relations

In this appendix we calculate the action of the operators A, D and C on a given off-shell state

I B z( ) . (B.1)
k I

k∏ Ω=
∈

We are mostly interested in the case where the set I is given by I m{2, 3, , }= … . One finds

{ }( ){ }A z I z I z I j( ) ( ) ( ) 1 , (B.2)I

j I
j
I

1 1 1  ∪∑= + ⧹
∈

{ }( ){ }D z I z I z I j( ) ( ) ( ) 1 , (B.3)I

j I
j
I

1 1 1  ∪∑= + ⧹
∈
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{ }( ){ }C z I z I j z I j k( ) ( ) { } ( ) , 1 . (B.4)
j I

j
I

j k I
j k

j k
I

1 1
,

, 1  ∪∑ ∑= ⧹ + ⧹
∈ ∈

<

The coefficients ,  and  appearing above read

{ }
z z f z z z z g z z f z z( ) ( ) ( , ), ( ) ( ) ( , ) ( , ), (B.5)I

k I

k j
I

j j

k I j

k j1 1 1 1 1 ∏ ∏α α= =
∈ ∈ ⧹

{ }
z z f z z z z g z z f z z( ) ( ) ( , ), ( ) ( ) ( , ) ( , ), (B.6)I

k I

k j
I

j j

k I j

j k1 1 1 1 1 ∏ ∏δ δ= =
∈ ∈ ⧹

and

z z z z z( ) ( ) ( ) ( ) ( ), (B.7)j
I

j
I I j

j
I I j

1 1 1 1 1    = +⧹ ⧹

z z z z z( ) ( ) ( ) ( ) ( ). (B.8)j k
I

j
I

k
I j

j
I

k
I j

, 1 1 1 1 1    = +⧹ ⧹

The formulas above can be deduced from the commutation relations in (4.6) and (4.7), see
also [20] for a more detailed explanation.

Appendix C. Proof of the recursion relation

Let us first note that (5.23) is compatible with the initial conditions (5.21) and (5.22). In order
to show that GJ

I (5.23) solves the recursion relation (5.20) we write (5.23) as

( ) ( ) ( )y z y z y zG D A, , , . (C.1)J
I

J
I

J
I

1 1 1= −+ + +

Here we defined

( ) ( )( ) ( )y z J g z z z f z z yD a M, ! , , ( ), (C.2)J
I

i J
i

j J
j

l I J
j l

J
1 1

{1}

1∏ ∏ ∏
∪

δ=+

∈

+ +

∈

+

∈ ⧹

+ + +
+

and

( ) ( )( ) ( )y z J g z z z f z z yA M a, ! , , ( ) . (C.3)J
I

i J
i

j J
j

l I J
l j

J
1 1

{1}

1∏ ∏ ∏
∪

α=+

∈

+ +

∈

+

∈ ⧹

+ +
+

+

Our proof is based on two identities

( )
( ) ( ) ( )

( ) ( ) ( ) ( ){ }
{ }

{ }
{ }

y z y z y z

z y z z y z

G D A

a D A a

, , ,

, , , (C.4)

J
I

J
I

J
I

j

k

j
I

J j
I j

j
I

J j
I j

1 1 1

2
1 1 1 1

k k k

k k
 ∑

= −

= +

+ + +

=

+
⧹

⧹ + +
⧹

⧹ +

and

(
)

( ) ( ) ( ) ( )

( ) ( )

{ }
{ }

{ }
{ }

{ }
{ }

z y z z y z

z y z

a G a a A

D a

, ,

, . (C.5)

i j k
i j
I

J i j
I i j

j

k

j
I

J j
I j

j
I

J j
I j

2
, 1 ,

,
1

2
1 1

1 1

k k

k

 



∑ ∑=

+

⩽ < ⩽

+
⧹

⧹ +

=

+
⧹

⧹ +

+
⧹

⧹ +

Substituting (C.1) for { }
{ }G

J j

I j

k ⧹
⧹ in the recursion relation (5.20) we see that if (C.4) and (C.5)

hold also (5.20) is satisfied.
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To show (C.4) and (C.5) we note that

( ) ( ) ( ){ }
{ }y z z y zD a D, , , (C.6)J

I

j J
j
I

J j
I j

1 1 1∑= ++

∈

+
⧹
⧹ +

( ) ( ) ( ){ }
{ }y z z y zA A a, , , (C.7)J

I

j J
j
I

J j
I j

1 1 1∑= −+

∈

+
⧹
⧹ +

with the coefficients  and  given in (B.5) and (B.6). These relations rely on the curious
identity

f x x p( , ) , (C.8)
k

p

i k

p

i k

1

∑∏ =
= ≠

which generalizes to the trigonometric case and can be shown by induction in p ∈  and
using the partial fraction decomposition

x x

x x x x

x x

x x

1
1

1 1
. (C.9)

i

p
i

i k

p

k i k

k i

k i1 1

∏ ∑ ∏− −
−

= −
−

− −
−= = ≠

It immediately follows that (C.4) holds. Furthermore, we note that the term on the left hand
side of (C.5) can be written as

( ) ( ) ( )

( )

{ }
{ }

{ }
{ }

{ }
{ }

z y z z z y z

z A z y z

a G a a D

A a

, ( ) ( ) ,

( ) ( ) , ,

(C.10)

i j k
i j
I

J i j
I i j

i

k

i
I

j
j i

k

j
I i

J i j
I i j

i

k

i
I

j
j i

k

j
I i

J i j
I i j

2
, 1 ,

,
1

2

1
2

1 ,
,

1

2

1
2

1 ,
,

1

k k

k

  



∑ ∑ ∑

∑ ∑

=

−

⩽ < ⩽

+
⧹

⧹ +

= =
≠

⧹
⧹

⧹ +

= =
≠
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see appendix B. Again using (C.6) and (C.7) we arrive at (C.5) which concludes the proof.

Appendix D. Hamiltonian

For completeness we give the Hamiltonian for the corresponding XXX 1
2
Heisenberg spin

chain. It can be obtained from the transfer matrix in (4.3) by taking the logarithmic derivative
at the shift-point, see e.g. [2]. It reads

( )H P2 , (D.1)
i

N

i i

1

, 1∑= −
=

+

with the permutation operator S SP ( 4 ) 2i i
i i

, 1
( ) ( 1)= + ⃗ ⃗+

+
 and the twisted boundary conditions

P Pe e . (D.2)N N
S

N
S

, 1
2i

,1
2iN N

3
( )

3
( )= ϕ ϕ

+
− +

Here the generators S
1

2
i i( ) ( )σ⃗ = ⃗ at site i are given in terms of the Pauli matrices σ ⃗.

Appendix E. Relations between both sides of the equator

Solutions beyond the equator were studied in [23]. Here we present a relation between the
roots zi

+ and z j
− as also obtained in [12] for s 1 2= . The derivation relies on the property that
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Q± have common eigenvectors and the fundamental commutation relations (4.11) and (4.13).
For s 1 2= we find

( )( )
( )( )

y q
y z

y z q y z q
y ze

1

2 1
. (E.1)

q

q
N

i

m
i

i i i

N m

i
0

2i

1 1

∑ ∏ ∏− −
−

− − − − −
= −ϕ

=

∞
−

=

−

− −
=

−
+⎜ ⎟⎛

⎝
⎞
⎠

We can set y zk= + and obtain the relations

( )
( )( )

z q
z z

z z q z z q

k N m

e
1

2 1

0 for 1, , . (E.2)
q

q
k

N

i
m k i

k i k i0

2i
1∑ − − ∏

−

− − − − −
= = … −

ϕ

=

∞
− +

=

+ −

+ − + −
⎜ ⎟⎛
⎝

⎞
⎠

This formula has been checked for a few examples. Similar relations hold for finite-
dimensional representations of higher spin. One finds

( )( )
( )( )

y s q
y z

y z q y z q
y zMe ( , , )

1
, (E.3)

q

q

i

m
i

i i i

sN m
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2i

1 1

2

∑ ∏ ∏−
− − − − −

= −ϕ Ω

=

∞
−

+
=

−

− −
=

−
+−

with the action of the diagonal elements of the monodromy on the reference state Ω∣ 〉− given
by

y s q
y s

y s
F s q s yM ( , , )

( )

( )
( 2 , , 1 , 1) , (E.4)

N

2 1
Γ
Γ

= +
−

− − − −Ω
+

− ⎛
⎝⎜

⎞
⎠⎟

which can be expressed in terms of Γ-functions.
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